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Transcript — Lecture 32

binh li Stokes (tiép); 6n tap
Xem bai giang tai day:
http://www.mientayvn.com/OCW/MIT/giai_tich_nhieu_bien.html
Thank you. So, yesterday we saw stuff about Stokes theorem. And, I have a few
more things to tell you about it, and some applications, and how it connects to
various other things. And then, we'll review for the exam because I hate to remind
you, but on Tuesday, that's the last test in this class, and so it's at 1 pm usual time
in the usual place, namely in Walker for most of you and in here for some of you.
Cam dn. Vang, hom qua ching ta da hoc dinh li Stokes. Va, t6i sé noi thém vai diéu vé no,
va mot s6 ‘’ng dung, va nd lién quan vdi nhitng th khac nhu thé nao. Va sau dd, ching ta
s& On tap chudn bj kiém tra bdi vi tdi phai nhéc ban 1a, vao ngay th( ba, d6 Ia bai kiém tra
cudi cung ctia mén nay, va vang ldc 1 gid chiéu nhu moi khi & dia diém nhu cii, cu thé l1a
8 Walker ddi véi hau hét cac ban va tai day cho mot s6 ban.

So: same place as last time and the time before. OK, so remember, we've seen
Stokes theorem, which says if I have a closed curve bounding some surface, S, and 1
orient the curve and the surface compatible with each other, then I can compute the
line integral along C along my curve in terms of, instead, surface integral for flux of a
different vector field, namely, curl f dot n dS. OK, so that's the statement. And, just
to clarify a little bit, so, again, we've seen various kinds of integrals. So, line

integrals we know how to evaluate. They take place in a curve. You express
everything in terms of one variable, and after substituting, you end up with a usual
one variable integral that you know how to evaluate.

Vi vdy: cung mot dia diém va thdi gian nhu trudc day. OK, nhdé réng, ching ta da hoc dinh
li Stokes, n6i dung la néu t6i cé6 mot dudng cong khép kin bao quanh mat S nao do, va toi
dinh hudng dudng cong va bé mat tuong thich v8i nhau, sau doé téi cé thé tinh tich phén
dudng doc theo dudng cong C cula t6i theo, tich phdn mat cho thong lugng cia mot trudng
vector khac, cu thé 13, curl f dot n dS. OK, vi vay d6 ndi dung dinh li. Va, chi d&€ 1am rd
thém mot chut, vi vay, mét [an nita, ching ta da thay cac loai tich phan khac nhau. Vang,
tich phan dudng ching ta da biét cach tinh. Chdng dudc tinh trén mot dudng cong. Ban
biéu di&én moi thir theo mdt bién, va sau khi th&, ban dugc tich phan ham mot bién binh
thudng.

And, surface integrals, we know also how to evaluate. Namely, we've seen various
formulas for ndS. Once you have such a formula, due to the dot product with this
vector field, which is not the same as that one. But it's a new vector field that you
can build out of f. You do the dot product. You express everything in terms of your
two integration variables, and then you evaluate. So, now, what does this have to do
with various other things?

Va, céc tich phdn mat, ching ta cling biét cach tinh. Cu thé, ching ta d& thdy cac céng
thirc khac nhau cta ndS. M6t khi ban dd c6 moét cong thirc nhu thé, vi tich v6 hudng vdéi
trudng vector nay, nd khéng gidng nhu cai d6. Nhung nd la mot trudng vector mdi ma ban
c6 thé xay dung tu f. Ban thuc hién tich vé hudng. Ban biéu dién moi thir theo hai bién tich
phén cla ban, va sau d6 ban tinh. Vi vy, bay gi¥, cdi nay dudc ('ng dung dé lam gi?

So, one thing I want to say has to do with how Stokes helps us understand path
independence, so, how it actually motivates our criterion for gradient fields,
independence. OK, so, we've seen that if we have a vector field defined in a simply
connected region, and its curl is zero, then it's a gradient field, and the line integral
is path independent. So, let me first define for you when a simply connected region
is. So, we say that a region in space is simply connected -

Vang, mot i'ng dung 1a dinh |i Stokes gilp ching ta hiéu su khéng phu thudc dudng di, vi
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vay, thuc su' nd 1a nguyén nhan gian tiép lam nay sinh diéu kién d&€ mot trudng la trudng
gradient, khéng phu thubc. OK, vi vay, ching ta da nhin thdy rang néu chidng ta cé mot
trudng vects dudc xac dinh trong mot vung daon lién, va curl cia nd bang khong, thind la
mot trudng gradient, va tich phan dudng khong phu thubéc dudng di. Vi vay, trudc hét toi
dinh nghia cho ban khi nao mét vung la don lién. Vi vay, chldng ta ndi r&ng mdt vung trong
khong gian la daon lién -

-- if every closed loop inside this region bounds some surface again inside this

region. OK, so let me just give you some examples just to clarify. So, for example,
let's say that I have a region that's the entire space with the origin removed. OK, so
space with the origin removed, OK, you think it's simply connected? Who thinks it's
simply connected? Who thinks it's not simply connected? Let's think a little bit

harder. Let's say that I take a loop like this one, OK, it doesn't go through the origin.
Can I find a surface that's bounded by this loop and that does not pass through the
origin? Yeah, I can take the sphere, you know, for example, or anything that's just
not quite the disk? So, and similarly, if I take any other loop that avoids the origin, I
can find, actually, a surface bounded by it that does not pass through the origin.

- Néu mdi vong khép kin bén trong viing nay lai bao quanh mot bé& mét nao dé bén trong
vung. OK, vi vy hay dé téi lam rd van dé nay qua mot sb vi du. Vi vay, vi du, giad si réng
to6i c6 mot vung chiém toan bd khong gian trir géc toa d6. OK, vi vay, toan bo khong gian
vdi gbc toa db bi bd di, OK, ban nghi rang né cé dan lién khdng? Ai nghirang né don lién?
Ai nghi rdng né khéng don lién? Hay suy nghi ki cang han mot chat. Gia sir téi 18y mot
vong nhu thé& nay, OK, né khdng di qua gdc toa dd. Toi cé thé tim mot bé mat dugc bao
quanh bdi vong nay va khdng ch(fa gbc toa dd khdng? Yeah, tdi cd thé chon mdt hinh cau,
ban da biét, vi du, hodc bat cr cai gi khong chi la hinh tron? Vi vay, va tudng tu, néu toi
chon béat ky vong nao khac khdng chra géc toa dd, tdi cé thé tim dudc, thuc su, mot bé
mat dudc bao quanh bai né khong chira géc toa do .

So, actually, that's kind of a not so obvious theorem to prove, but maybe intuitively,
start by finding any surface. Well, if that surface passes through the origin, just
wiggle it a little bit, you can make sure it doesn't pass through the origin anymore.
Just push it a little bit. So, in fact, this is simply connected. That was a trick



question. OK, now on the other hand, a good example of something that is not
simply connected is if I take space, and I remove the z axis -

Vi vay, thuc su, dé khdng phai la dinh Ii khd rd rang dé ching minh, nhung cé 1&
truc quan, bat ddu bdng cach tim bat ky bé mat nao. Vang, néu bé mat chlra gdc toa
dd, chi can 18c né mot chdt, ban cé thé chdc chdn réng né khéng di qua gbc toa dd
nifa. Chi cdn ddy né mot chat. Vi vay, trén thuc té, cai nay la don lién. D6 1a mot cau
hoi khé. OK, bay gid trai lai, mot vi du hay vé vung khong dan lién la néu toi chon
khong gian, va téi bo truc z -

-- that is not simply connected. And, see, the reason is, if I look again, say, at the
unit circle in the x axis, sorry, unit circle in the xy plane, I mean, in the xy plane, so,
if I try to find a surface whose boundary is this disk, well, it has to actually cross the
z axis somewhere. There's no way that I can find a surface whose only boundary is
this curve, which doesn't hit the z axis anywhere.

- né khong don lién. Va, thay khong, ly do |3, néu toi lai xét, gia sir, dudng tron don vi
trong truc x, xin 18i, dudng tron don vi trong mat phang xy, y tdi 13, trong mat phng xy,
do dd, néu t6i thir tim b& mat ma bién cla nd la dudng tron nay, vang, né phai di qua
truc z § dau d6. Khong thé nao cd6 mot bé& mat ma bién cla né 1a dudng cong nay, khéng
cham truc z & bat c(r dau.

Of course, you could try to use the same trick as there, say, maybe we want to go
up, up, up. You know, let's start with a cylinder. Well, the problem is you have to go
infinitely far because the z axis goes infinitely far. And, you'll never be able to
actually close your surface. So, the matter what kind of trick you might want to use,
it's actually a theorem in topology ERatiyouicannotifind a surfacerbounded by this
disk without intersecting the z axis.

T&t nhién, ban cé thé thi sir dung tha thudt tuong tu nhu & d6, gia si, cé 18 ching ta
muén di 1én, 1én, 1én. Ban biét, ching ta hdy b&t dau v8i mdt hinh tru. Vang, van dé 1a ban
phai di xa v6 clng vi truc z di ra xa v6 cung. Va, ban sé khong bao gid dong dugdc bé mat
cua ban. Vi vay, van dé la loai tha thuat nao ban muén sir dung, né thuc su la moét dinh ly
trong topo, d6 la ban khdong thé tim mét bé mat dugc bao bdi dudng tron nay ma khong
giao vdi truc z.

Yes? Well, a doughnut shape certainly would stay away from the z axis, but it

wouldn't be a surface with boundary just this guy. Right, it would have to have either
some other boundary. So, maybe what you have in mind is some sort of doughnut
shape like this that curves on itself, and maybe comes back. Well, if you don't quite
close it all the way around, so I can try to, indeed, draw some sort of doughnut here.
Xin m@i? Vang, mot hinh dang nhu banh ran chac chan sé nam xa truc z, nhung no sé
khéng la mot bé mat véi bién la thang nay. Dung, nd phai cé bién khac. Vang, cé |1& ban
dang nghi d&n mot sé loai banh ran cd hinh dang nhu thé nay bé cong chinh né, va cé thé
trd lai. VAng, néu ban khéng hoan toan déng né & moi ndi xung quanh, vi vay tdi cé thé thir
vé mot s6 loai banh ran & day.

Well, if I don't quite close it, that it will have another edge at the other end wherever

I started. If I close it completely, then this curve is no longer its boundary because

my surface lives on both sides of this curve. See, I want a surface that stops on this
curve, and doesn't go beyond it. And, nowhere else does it have that kind of

behavior. Everywhere else, it keeps going on. So, actually, I mean, maybe actually
another way to convince yourself is to find a counter example to the statement I'm
going to make about vector fields with curl zero and simply connected regions always
being conservative.

Vang, néu toi khéng déng nd hoan toan, né cé mét bién khac & dau kia bat clr ngi nao khac
tdi bat dau. N&u tdi ddng né hoan toan, thi dudng cong nay khéng con la bién cta nd vi bé
mat cla téi ndm trén ca hai phia clia dudng cong nay. Thdy khdng, t6i mubn mot bé mat
diing trén dudng cong nay, va khong vugt qua nd. Va, né chi cé tinh chat nay & day. O khap
moi ndi khac, nd nhu binh thudng. Vi vay, trén thuc té&, y toi 1a, cé thé mot cach khac dé
thuyét phuc chinh ban Ia tim mo6t phan vi du cta dinh li ma t6i s€ tao ra vé trudng vector



vdi curl bang khéng va cac vung don lién lubén luén bao toan.

So, what you can do is you can take the example that we had in one of our older
problem sets. That was a vector field in the plane. But, you can also use it to define

a vector field in space just with no z component. That vector field is actually defined
everywhere except on the z axis, and it violates the usual theorem that we would
expect. So, that's one way to check just for sure that this thing is not simply
connected.

Vi vay, nhitng gi ban c6 thé lam la ban cb thé& 18y vi du ma ching ta da c6 trong mét trong
nhitng x&p bai tép cli hon. Bé cling 1a mét trudng vectd trong mat phang. Tuy nhién, ban
cling co thé s dung ndé dé€ xac dinh mot trudng vects trong khdng gian chi can bo di thanh
phan z. Trudng vector do6 thuc su dugc xac dinh ¢ moi ngi trir trén truc z, va nd vi pham
dinh ly thdng thudng ma chdng ta mong chd. Vi vay, dé 1a mét cach dé kiém tra nham
khang dinh chac chan rang cai nay khéng don lién.

So, what's the statement I want to make? So, recall we've seen if F is a gradient

field -- -- then its curl is zero. That's just the fact that the mixed second partial
derivatives are equal. So, now, the converse is the following theorem. It says if the
curl of F equals zero in, sorry, and F is defined -- No, is not the logical in which to

say it. So, if F is defined in a simply connected region, and curl F is zero -

Vi vy, phat biéu tdi mudn tao ra la gi? Vang, nhd lai rang ching ta da hoc néu F |a mét
trudng gradient - - thi curl ctia nd bang khdng. D6 chi 1a do cac dao ham cép hai hon hop
béng nhau. Vi vdy, by gid, chung quy la dinh ly sau ddy. N6 ndi néu curl F bédng khéng
trong, xin 16i, va F dudc xac dinh - Khéng, ndi nhu vay khéng hgp li. Vang, néu F dugc xac
dinh trong vung don lién, va curl F bang khdng -

-- then F is a gradient field, and the line integral for F is path independent -- -- F is
conservative, and so on, all the usual consequences. Remember, these are all
equivalent to each other, for example, because you can use path independence to
define the potential by doing the line integral of F. OK, so where do we use the
assumption of being defined in a simply connected region? Well, the way which we
will prove this is to use Stokes theorem. OK, so the proof, so just going to prove that
the line integral is path independent; the others work the same way. OK, so let's
assume that we have a vector field whose curl is zero.

- thi F la trudng gradient, va tich phan dudng clia F khong phu thuéc dudng di - - F
bao toan, va v.v...., tdt ca cac hé qua théng thudng. Hay nhd réng, tat ca nhiing cai
nay tuong dudng nhau, vi du, bdi vi ban cé thé s dung tinh chat khéng phu thudc
dudng di d€ xac dinh thé bang céch tinh tich phan dudng cua F. OK, vy ching ta dung
gia thuyét xac dinh trong vung don lién & dau? Vang, cach ma ching ta sé chirng minh
diéu nay la s dung dinh ly Stokes. OK, vi vy chirng minh, chi cdn chirhg minh réng
tich phan dudng khong phu thudc dudng di; nhitng cai khac lam viéc tuong tu. OK, vi
vay gia s rang ching ta c6 mot trudng vector ma curl ca né bdng khéng.



And, let's say that we have two curves, C1 and C2, that go from some point PO to
some point P1, the same point to the same point. Well, we'd like to understand the
line integral along C1, say, minus the line integral along C2 to show that this is zero.
That's what we are trying to prove. So, how will we compute that? Well, the line
integral along C1 minus C2, well, let's just form a closed curve that is C1 minus C2.
OK, so let's call C, woops -

Va, gia s réng ching ta c6 hai dudng cong, C1 va C2, di tr diém PO nao d6 dén diém P1
nao dd, cung mot diém dén cing mét diém. Vang, ching ta can biét tich phan d udng doc
theo C1, gia s, trir tich phdn dudng doc theo C2 dé chirng toé réang cdi nay bang khdng.
Dé la nhitng gi chiing ta dang c& gang chirng minh. Vi vay, ching ta sé& tinh n6 nhu thé&
nao? Vang, tich phan dudng doc theo C1 trir C2, véang, ching ta hdy tao ra dudng cong
kin la C1 tri&r C2. OK, vi vay ching ta hay goi C, Ga -

So that's equal to the integral along C of f dot dr where C is C1 followed by C2
backwards. Now, C is a closed curve. So, I can use Stokes theorem. Well, to be able
to use Stokes theorem, I need, actually, to find a surface to apply it to. And, that's
where the assumption of simply connected is useful. I know in advance that any
closed curve, so, C in particular, has to bound some surface. OK, so we can find S, a
surface, S, that bounds C because the region is simply connected. So, now that tells
us we can actually apply Stokes theorem, except it won't fit here. So, instead, I will
do that on the next line.

Véng nd bang tich phan doc theo C cla f dot dr & day C Ia C1 tiép theo |a C2 ddo ngudgc.
Bay gid, C la mdt dudng cong kin. Vi vy, toi cé thé sir dung dinh ly Stokes. Vang, dé cé
thé sir dung dinh ly Stokes, tdi can, thuc su, tim mot bé mat dé€ ap dung nd. Va, dé 1a nai
gia thuyét dan lién c6 ich. T6i biét trudc rang bat ky dudng cong kin nao, vang, ddc biét la
C, phai bao quanh bé mat nao dé. OK, vi vay ching ta cé thé tim S, mét mat, S, bao
quanh C bgi vi vung dan lién. Vi vay, bay gic diéu dé cho ching ta biét thuc su ching ta
cb thé& ap dung dinh |i Stokes, ngoai trir nd s& khéng phu hgp & day. Vi vy, thay vao dé,
toi sé lam diéu dé trén dudng ti€p theo.

That's equal by Stokes to the double integral over S of curl F dot vector dS, or ndS. But
now, the curl is zero. So, if I integrate zero, I will get zero. OK, so I proved that my
two line integrals along C1 and C2 are equal. But for that, I needed to be able to
find a surface which to apply Stokes theorem. And that required my region to be
simply connected. If I had a vector field that was defined only outside of the z axis
and I took two paths that went on one side and the other side of the z axis, I might
have obtained, actually, different values of the line integral. OK, so anyway, that's
the customary warning about simply connected things.
Theo dinh |i Stokes, nd béng tich phan kép cla curl F dot vector dS trén S, hodc ndS.
Nhung hién tai, curl bdng khéng. Vi vy, néu tdi I8y tich phan khéng, két qua sé& bang
khdng. OK, vi vay tdi d& chirng minh réng hai tich phdn dudng doc theo C1 va C2 béng
nhau. Nhung dé Iam diéu do, tdi can tim mot bé mat dé€ ap dung dinh li Stokes. Va diéu dé
doi héi vung cua t6i don lién. N€u toi cé mot trudng vects dugc xac dinh chi & bén ngoai
truc z va tdi chon hai dudng di & mot phia va phia kia 1a truc z, tdi cé thé cé dugc, thuc su,
nhirng gia tri khac nhau cda tich phan dudng. OK, do d6 du sao di nira, d6 la canh bao
theo thong I€é vé khai niém don lién.

OK, let me just mention very quickly that there's a lot of interesting topology you
can do, actually in space. So, for example, this concept of being simply connected or
not, and studying which loops bound surfaces or not gcanibe used to classify shapes
of things inside’space. So, for example, one of the founding achievements of
topology in the 19th century was to classify surfaces in space -- -- by trying to look
at loops on them. So, what I mean by that is that if I take the surface of a sphere,
well, I claim the surface of a sphere -

OK, hady dé toi dé cap rat nhanh vé topology thu vi trong khdng gian. Vang, vi du, khai
niém vé mién dan lién hodc khéng, va nghién cltu cac vong bao quanh cac bé mat hoac
khéng, ching cé thé dugc dung dé€ phan loai hinh dang céc thr bén trong khdng gian. Vi
vay, vi du, mot trong nhitng thanh tuu nén tang cua topo trong thé€ ky 19 la phan loai



céc bé mat trong khéng gian - - bdng cach tim vong trén ching. Véng, diéu d6 cd nghia
Ia néu t6i chon bé mat ctia moét hinh cdu, vang, tdi khdng dinh bé& m dt ciia mdt hinh céu

-- is simply connected. Why is that? Well, let's take my favorite closed curve on the
surface of a sphere. I can always find a portion of the sphere that's bounded by it.
OK, so that's the definition of the surface of a sphere being simply connected. On the
other hand, if I take what's called a torus, QEIfVOU prefer, the surface of a
doughnut, that's more, it's a less technical term, but it's -

- la dan lién. Tai sao vay? Vang, gia si rang dudng cong kin yéu thich cla tdi

nam trén bé mat cda hinh cdu. Téi ludn ludn tim dugdc phan clda hinh cdu dudc

noé bao quanh. OK, vi vay d6 la dinh nghia clia bé mat cia mét hinh cau la don

lién. Mat khac, néu t6i chon mot torus, no giong nhu, bé mat cda cai banh ran,

no hai, do la thuat nglr khong khoa hoc, nhung né -

-- well, that's not simply connected. And, in fact, for example, if you look at this loop
here that goes around it, well, of course it bounds a surface in space. But, that
surface cannot be made to be just a piece of the donut. You have to go through the
hole. You have to leave the surface of a torus. In fact, there's another one. See, this
one also does not bound anything that's completely contained in the torus. And, of
course, it bounds this disc, but inside of a torus. But, that's not a part of the surface
itself. So, in fact, there's, and topologists would say, there's two independent -

- vang, cai dé khong dan lién. Va, qua thuc, vi du, néu ban xét vong nay & day di xung
quanh nd, vang, tat nhién né bao quanh mot bé mat trong khong gian. Tuy nhién, bé mat
d6 khdng phai [d moét phan clia banh ran. Ban phai di qua 16. Ban phai rdi khoi bé mat cua
torus. Qua thuc, c6 moét cai khac. Thay khéng, cai nay cling khéng bao quanh bat ci thir gi
dudc chilra trong torus. Va, tat nhién, né bao quanh hinh tron nay, nhung bén trong cla
torus. Nhung, dé la mét phan cla chinh bé mat. Vi vay, trén thuc té€, cd, va cac nha topo
sé& noi, c6 hai -

-- loops that don't bound surfaces, that don't bound anything. And, so this number
two is somehow an invariant that you can associate to this kind of shape. And then,
if you consider more complicated surfaces with more holes in them, you can try,
somehow, to count independent loops on them, and that's the beginning of the
classification of surfaces. Anyway, that's not really an 18.02 topic, but I thought I
would mentioned it because it's kind of a cool idea.

- vong doc lap khéng bao quanh cac bé mat, khong bao quanh bt ci th gi. Va, vi vay
s hai nay la bt bién gén lién véi loai hinh dang nay. Va sau do, néu ban xét cac bé
mét phirc tap han véi 16 nhigu hon trén chiing, ban cé thé thir, bdng cach nao do, dé
dém sb vong doc lap trén ching, va do la su kha@i dau cua viéc phan loai bé mat. Du sao
di n{ra, d6 khong thuc su la cha dé cda 18,02, nhung toi dé cap dén né bdi vi né la mot
y tudng kha thua vi.



OK, let me say a bit more in the way of fun remarks like that. So, food for thought:
let's say that I want to apply Stokes theorem to simplify a line integral along the
curve here. So, this curve is maybe not easy to see in the picture. It kind of goes
twice around the z axis, but spirals up and then down. OK, so one way to find a
surface that's bounded by this curve is to take what's called the Mobius strip. OK, so
the Mobius strip, it's a one sided strip where when you go around, you flip one side
becomes the other. So, you just, if you want to take a band of paper and glue the

two sides with a twist, so, it's a one sided surface.

OK, hdy dé téi néi thém mdt chdt vé nhitng diéu tha vi nhu thé. Vang, thuc phdm cho tu
duy: gia s réng tdi mudn ap dung dinh ly Stokes d€ don gian hda tich phan dudng doc
theo dudng cong & day. Vang, dudng cong nay cé 1& khong dé thdy trén hinh. N6 di hai Ian
quanh truc z, nhung xodn 8¢ Ién va sau d6 xubng. OK, do d4, mét cach d€ tim mot bé mat
dudc bao quanh bdi dudng cong nay la chon bang Mobius. OK, do dd, bang Mobius, dé la
bang mot phia ma khi ban di quanh nd, ban 14t mot phia thanh bén kia. Vang, ban cé thé
thir, béang cach 18y mot béng gidy va dan hai phia & chd xoén, do db, né 1a bé mat mot
phia.

And, that gives us, actually, serious trouble if we try to orient it to apply Stokes
theorem. So, see, for example, if I take this Mobius strip, and I try to find an
orientation, so here it looks like that, well, let's say that I've oriented my curve going
in this direction. So, I go around, around, around, still going this direction. Well, the
orientation I should have for Stokes theorem is that when I, so, curve continues

here. Well, if you look at the convention around here, it tells us that the normal
vector should be going this way. OK, if we look at it near here, if we walk along this
way, the surface is to our right .

Va, diéu dé cho ching ta, thuc su, mét van dé nghiém trong néu chung ta thir dinh hudng
né dé ap dung dinh ly Stokes. Vi vdy, thdy khdng, vi du, néu t6i dung bang Mobius nay, va
tdi ¢8 g&ng tim modt su dinh hudng, véng & day c6 vé nhu, vang, gia st rdng tdi d3 dinh
hudng dudng cong cla toi theo hudng nay. Vi vay, téi di xung quanh, xung quanh, xung
quanh, van di theo hudng nay. Vang, dinh hudng ma tdi sé cé cho dinh Ii Stokes la khi ti,
vang, dudng cong lién tuc & day. Vang, néu ban xét quy udc quanh day, né cho ching ta
biét rang vector phap tuyén sé di theo hudng nay. OK, néu ching ta xét n6 gan day, néu
ching ta di doc theo dudng nay, bé mat sé & bén phai chdng ta.

So, we should actually be flipping things upside down. The normal vector should be
going down. And, in fact, if you try to follow your normal vector that's pointing up,
it's pointing up, up, up. It will have to go into things, into, into, down. There's no
way to choose consistently a normal vector for the Mobius strip. So, that's what we
call a non-orientable surface. And, that just means it has only one side. And, if it has
only one side, that we cannot speak of flux for it because we have no way of saying
that we'll be counting things positively one way, negatively the other way, because
there's only one, you know, there's no notion of sides. So, you can't define a side
towards which things will be going positively. So, that's actually a situation where
flux cannot be defined.

Vi vay, chiing ta thuc su dang dao cac thr I1on ngugc. Vector phap tuyén sé hudng xudng.
Va, qua thuc, néu ban thur cho vector phap tuyén clda ban hudng Ién, né dang hudng Ién,
Ién, 1&n. NO sé phai di vao cac thir, vao trong, vao trong, xuéng. Khong cé cach cd dinh
nao dé chon mdt vector phap tuyén cho bédng Mobius. Vi vy, ching ta goi d6 la bé mat
khong dinh hudng. Va, diéu dé cé nghia la né chi cd mot mat. Va, néu nd chi cd mot mat,
ching ta khéng thé néi vé théng lugng ddi v&i nd bdi vi ching ta khéng thé néi réng ching
ta tinh cac th{r duong theo dudng nao, am theo dudng nao, bdi vi chi cé mot, ban biét,
khdng cb khai niém vé céac phia. Vi vy, ban khdong thé xac dinh phia duong. Vi vay, do
thuc su la mot trudng hgp thong lugng khong xac dinh.

OK, so as much as Mobius strips and climb-bottles are exciting and really cool, well,
we can't use them in this class because we can't define flux through them. So, if we
really wanted to apply Stokes theorem, because I've been telling you that space is
simply connected, and I will always be able to apply Stokes theorem to any curve,



what would I do? Well, I claim this curve actually bounds another surface that is
orientable.

OK, do dé tham chi cac bang Mobius va cac day leo quanh chay la thu vi va thuc su hap
dan, vang, ching ta khong thé dung ching trong mén nay bdi vi chiing ta khong thé xac
dinh thong lugng qua chung. Vi vay, néu ching ta thuc sy mudén ap dung dinh ly Stokes,
bai vi toi da ndi véi ban réng khdng gian la don lién, va tdi s& ludn luén cd thé ap dung
dinh ly Stokes cho bat ky dudng cong nao, t6i s& lam gi? Vang, t6i cho rdng dudng cong
nay thuc su sé& bao quanh bé mat cé thé dinh hudng.

Yeah, that looks counterintuitive. Well, let's see it. I claim you can take a
hemisphere, and you can take a small thing and twist it around. So, in case you

don't believe me, let me do it again with the transparency. Here's my loop, and see,
well, the scale is not exactly the same. So, it doesn't quite match. But, and it's
getting a bit dark. But, that spherical thing with a little slit going twisting into it will
actually have boundary my loop. And, that one is orientable. I mean, I leave it up to
you to stare at the picture long enough to convince yourselves that there's a well-
defined up and down. OK.

Yeah, diéu d6 khong dé& nhan ra. Vang, ching ta hdy xét nd. T6i cho réng ban cé thé 18y
mot ban ciu, va ban cd thé 18y mét vat nho va xodn quanh nd. Vi vy, trong trudng hap
ban khdng tin tdi, hdy dé toi thuc hién lai nd mot cach minh bach. Pay 1a vong cua tdi, va
thay khong, vang, ty Ié khong giéng chinh xac. Vi vay, né khong hoan toan khép. Nhung,
va no trd nén t8i han mot chdt. Nhung vt hinh cdu dé vsi mot khe nhé xoén vao trong né
sé& cd bién |a vong cua tdi. Va, cai dé cé thé dinh hudng dudc. Y t6i 13, téi dé ban nhin vao
hinh du 1du dé tu thuyé&t phuc ban rang 6 dé d udc xac dinh 1én va xuéng. OK.

So now, I mean, in case you are getting really, really worried, I mean, there won't
be any Mobius strips on the exam on Tuesday, OK? It's just to show you some cool
stuff. OK, questions? No? OK, one last thing I want to show you before we start
reviewing, Solone questioniyourmightthaveaboutiStokes theoremils, how come we
can choose whatever surface we want? I mean, sure, it seems to work, but why?

Vi vay, bay gig, y toi la, trong trudng hgp ban dang trd nén thuc su, thuc su lo 1&ng, y toi
la, s& khéng c6 dai bdng Mobius nao trong bai ki€m tra vao th ba, OK? Tdi chi dang chi
cho ban mot s6 diéu thu vi. OK, cau héi? Khong cé? OK, diéu cubi cung téi mudn chi cho
ban trudc khi ching ta bat dau 6n tap, moét van dé nita nay sinh trong dinh li Stokes la,
lam thé& ndo dé chiing ta cé thé chon bat clr b& mét nao chlng ta mudn? Y t6i I3, chéc
chdn, diéu d6 dudng nhu cé thé thuc hién dudc, nhung tai sao?



So, I'm going to say a couple of words about surface independence in Stokes
theorem. So, let's say that I have a curve, C, in space. And, let's say that I want to
apply Stokes theorem. So, then I can choose my favorite surface bounded by C. So,

in a situation like this, for example, I might want to make my first choice be this

guy, S1, like maybe some sort of upper half sphere. And, if you pay attention to the
orientation conventions, you'll see that you need to take it with normal vector

pointing up. Maybe actually I would rather make a different choice.

Vi vay, t6i sé ndi vai diéu vé su khong phu thudc bé mat trong dinh Ii Stokes. Vang, gia st
réang tdi c6 mét dudng cong, C, trong khdng gian. Va, gia s rang téi mudn ap dung dinh li
Stokes. Vang, thé thi tdi cd th&é chon bé mat yéu thich cla tdi dudc bao quanh bdi C. Vi
vay, trong trudng hop nhu thé nay, vi du, t6i c6 thé mudn thuc hién chon lua dau tién 1a
thang nay, S1, cé thé 1a nlra trén cua hinh cdu nao dé. Va, néu ban chd y dén quy udc
dinh hudng, ban s& thdy rang ban can phai chon nd vdi vector phap tuyén hudng 1én. C6 1&
t6i mudn thuc hién mot su chon lya khac.

And actually, I will choose another surface, S2, that maybe looks like that. And, if I
look carefully at the orientation convention, Stokes theorem tells me that I have to
take the normal vector pointing up again. So, that's actually into things. So, Stokes
says that the line integral along C of my favorite vector field can be computed either
as a flux integral for the curl through S1, or as the same integral, but through S2
instead of S1.

Va thuc su, tdi s& chon mot bé mat, S2, cb thé c6 dang nhu thé. Va, néu tdi xem xét can
than quy udc dinh hudng, dinh ly Stokes cho tdi biét réng téi lai phai chon vector phap
tuyén hudng I1én. Vi vay, nd thuc su di vao trong cac th. Vi vay, Stokes ndi rang tich phan
dudng doc theo C cua trudng vector yéu thich cua téi c6 thé dugc tinh hodc nhu Ia théng
lugng d6i vdi curl qua S1, hoac nhu tich phan tuong tu, nhung qua S2 thay vi S1.

So, that seems to suggest that curl F has some sort of surface independence

property. It doesn't really matter which surface I take, as long as the boundary is

this given curve, C. Why is that? That's a strange property to have. Where does it
come from? Well, let's think about it for a second. So, why are these the same? I
mean, of course, they have to be the same because that's what Stokes tell us. But,
why is that OK? Well, let's think about comparing the flux integral for S1 and the flux
integral for S2. So, if we want to compare them, we should probably subtract them
from each other. OK, so let's do the flux integral for S1 minus the flux integral for S2
of the same thing.

Vi vay, ham y cua diéu dé la curl F cé tinh chat khéng phu thudc vao bé mat. T6i chon bé
mét nao khdng quan trong, mién 13 bién 1a dudng cong C nay. Tai sao vay? D6 1a mot tinh
chat la. Nguyén nhan do dau? Vang, ching ta hay suy nghivé né moét chat. Vi vay, tai sao
nhitng th&ng nay gidng nhau? Y toi 13, tat nhién, ching phai gidng nhau bdi vi dé la nhitng
gi Stokes cho chung ta biét. Tuy nhién, tai sao diéu dé6 OK? Vang, ching ta hdy nghi vé
viéc so sanh tich phan théng lugng cho S1 va tich phan théng lugng cho S2. Vi vay, néu
chiing ta muén so sanh ching, ching ta cé thé trir ching véi nhau. OK, vay ching ta hay
tinh tich phan thong lugng ddi v@i S1 trir tich phan thong lugng ddi véi S2 cua cung mot
thar.

Well, let's give a name. Let's call S the surface S1 minus S2. So, what is S? S is S1
with its given orientation together with S2 with the reversed orientation. So, S is
actually this whole closed surface here. And, the normal vector to S seems to be
pointing outwards everywhere. OK, so now, if we have a closed surface with a

normal vector pointing outwards, and we want to find a flux integral for it, well, we
can replace that with a triple integral. So, that's the divergence theorem. So, that's

by the divergence theorem using the fact that S is a closed surface.

Vang, hay dat tén. Hay goi S la bé mat S1 trir S2. Vay, S la gi? S la S1 vdéi su dinh hudng
cho trudc cua nd cung véi S2 véi su dinh huéng dao ngugc. Vi vay, S thuc su la toan bd bé
mat dong nay & day. Va, vector phap tuyén cia S dudng nhu hudng ra phia ngoai 8 moi
ngi. OK, vay bay gid, néu ching ta c6 moét bé mat dong vdi vector phap tuyén hudng ra
ngoai, va chiing ta mudn tim tich phan thdng lugng cho nd, vang, ching ta cé thé thay thé
né bdng mét tich phan ba Idp. Vi vay, do la dinh ly phan ky. Vi vay, dé la bdi vi dinh ly



divergence dung su kién S la bé mat khép kin.

That's equal to the triple integral over the region inside. Let me call that region D of
divergence, of curl F dV. OK, and what I'm going to claim now is that we can actually
check that if you take the divergence of the curl of a vector field, you always get

zero. OK, and so that will tell you that this integral will always be zero. And that's

why the flux for S1, and the flux for S2 were the same a priori and we didn't have to
worry about which one we chose when we did Stokes theorem. OK, so let's just

check quickly that divergence of a curve is zero.

N6 bang tich phan ba I8p trén vung bén trong. Hay dé tbi goi dd |a ving D cla divergence,
cla curl F dV. OK, va bay gi§ téi khang dinh rdng néu ban |18y divergence cula curl cia mét
trudng vector, ban luén ludn nhan dudc két qua bang khdng. OK, va vi vay diéu dé sé& cho
chiing ta biét rang tich phan sé& luén ludn bang khéng. Va dé la li do tai sao théng lugng
qua S1, va thdng lugng qua S2 gidng nhau va ching ta khéng phai lo 1&ng vé viéc chon céi
nao khi chidng ta diing dinh ly Stokes. OK, vi vay chi can kiém tra diéu kién divergence cua
curl cé bang 0 hay khéng.

OK, in case you're wondering why I'm doing all this, well, first I think it's kind of
interesting, and second, it reminds you of a statement of all these theorems, and all
these definitions. So, in a way, we are already reviewing. OK, so let's see. If my
vector field has components P, Q, and R, remember that the curl was defined by this
cross product between del and our given vector field. So, that's Ry - Qz followed by
Pz - Rx, and Qx - Py. So, now, we want to take the divergence of this.

OK, trong trudng hgp ban dang tu hoi tai sao t6i lam tat ca diéu nay, vang, dau tién toi
nghi rang nd kha tha vi, va th hai, né giuwsp ban nhd lai néi dung cua tat ca nhitng dinh
li nay, va tét ca nhitng dinh nghia. Vi vay, dudng nhu ching ta da 6n tap roi. OK, do dd,
h&dy xem. N&u trudng vector cua tbi c6 thanh phan P, Q, R, hdy nhd rdng curl dudc xac
dinh bai tich vector gilta del va trudng vector clia ching ta. Vi vay, dé la Ry - Qz ti€p theo
la Pz - Rx, va Qx - Py. Vi vay, bay gid, ching ta mudn tinh divergence cta cai nay.

Well, so we have to take the first component, Ry minus Qz, and take its partial with
respect to x. Then, take the y component, Pz minus Rx partial with respect to y plus
Qx minus Py partial with respect to z. And, well, now we should expand this. But I
claim it will always simplify to zero. OK, so I think we have over there, becomes R
sub yx minus Q sub zx plus P sub zy minus R sub xy plus Q sub xz minus P sub yz.
Vang, vi vay chung ta phai Idy thanh phan th& nhat, Ry trir Qz, va lay dao ham cua né
theo x. Sau dd, lay thanh phan y, Pz trir Rx dao ham riéng theo y cong véi Qx trir Py dao
ham riéng theo z. Va, vang, bay gid chiing ta sé& khai trién cai nay. Nhung téi cho réng né
ludn ludn dugc don gidn bang khdng. OK, vi vay tdi nghi chiing ta co trén kia, trd thanh R
yx trtr Q zx cong Pzy trir R xy cong Q xz trir P yz.



Well, let's see. We have P sub zy minus P sub yz. These two cancel out. We have R
sub yx minus R sub xy. These cancel out. Q sub zx and Q sub xz, these two also
cancel out. So, indeed, the divergence of a curl is always zero. OK, so the claim is
divergence of curl is always zero. Del cross F is always zero, and just a small remark,
if we had actually real vectors rather than this strange del guy, indeed we know that
if we have two vectors, U and V, and we do u dot u cross v, what is that?

Vang, xem nao. Chlng ta c6 P zy tri&r P yz. Hai cdi nay triét tiéu. Ching ta cé R yx trr R
xy. Nhitng cai nay triét tiéu. Q zx va Q xz, hai cai nay ciing triét tiéu. Vi vay, thuc vay,
divergence cua curl luén bang khéng. OK, vi vay divergence cua curl luén bang khéng. Del
chéo F ludn ludn bang khong, va mbt nhan xét nho nifa, n€u chidng ta cé cac vector thuc
thay vi thang del la nay, qua that ching ta biét rang néu chlng ta cé hai vectd, U va V, va
chuing ta tinh u dot u chéo v, né bang gi?

Well, gheway torsay it is it's the determinant of u, u, and v, which is the volume of
the box. But, it's completely flat because u, u, and v are all in the plane defined by u
and v. The other way to say it is that u cross v is perpendicular to u and v. Well, if
it's perpendicular u, then its dot product with u will be zero. So, no matter how you
say it, this is always zero. So, in a way, this reinforces our intuition that del, even
though it's not at all an actual vector sometimes can be manipulated in the same
way.

Vang, moét cach ndi la né Ia dinh thic cla u, u, va v, |a thé tich cua hdp. Tuy nhién, né
hoan toan phang bdi vi u, u, va v déu ndm trong mét phang dudc xac dinh bdi u va v.
Céach dién dat khac 13 ndi r&ng u chéo v vudng gdc véi u va v. Vang, néu né vudng géc vdi
u, thi tich v6 hudng cliia n6 véi u sé bang khodng. Vi vay, ban nodi cach nao cling dugc, cai
nay ludn bang khéng. Vi vay, theo cach nao dd, diéu nay cing c8 kha nang truc giac cua
chiing ta rdng del, mdc du né khdng phai 1a vector thuc su thinh thoang né lai cé thé dugc

thao tac theo cach terni tu nhu mét vector tronﬁ tinh toan.

OK, I think that's it for new topics for today. And, so, now I should maybe try to
recap quickly what we've learned in these past three weeks so that you know, so,
the exam is probably going to be similar in difficulty to the practice exams. That's my
goal. I don't know if I will have reached that goal or not. We'll only know that after
you've taken the test. But, the idea is it's meant to be more or less the same level of
difficulty. So, at this point, we've learned about three kinds of beasts in space.

OK, so I'm going to divide my blackboard into three pieces, and here I will write
triple integrals. We've learned about double integrals, and we've learned about line
integrals. OK, so triple integrals over a region in space, we integrate a scalar
quantity, dV. How do we do that? Well, we can do that in rectangular coordinates
where dV becomes something like, maybe, dz dx dy, or any permutation of these.

We've seen how to do it also in cylindrical coordinates where dV is maybe dz times r
dr d theta or more commonly r dr d theta dz. But, what I want to emphasize in this
way is that both of these you set up pretty much in the same way. So, remember,
the main trick here is to find the bounds of integration. So, when you do it, say, with
dz first, that means for fixed xy, so, for a fixed point in the xy plane, you have to
look at the bounds for z. So, that means you have to figure out what's the bottom
surface of your solid, and what's the top surface of your solid? And, you have to find
the value of z at the bottom, the value of z at the top as functions of x and v.

And then, you will put that as bounds for z. Once you've done that, you are left with
the question of finding bounds for x and y. Well, for that, you just rotate the picture,
look at your solid from above, so, look at its projection to the xy plane, and you set
up a double integral either in rectangular xy coordinates, or in polar coordinates for x
and y. Of course, you can always do it a different orders. And, I'll let you figure out
again how that goes. But, if you do dz first, then the inner bounds are given by
bottom and top, and the outer ones are given by looking at the shadow of the



region. Now, there's also spherical coordinates. And there, we've seen that dV is rho
squared sine phi d rho d phi d theta. So now, of course, if this orgy of Greek letters
is confusing you at this point, then you probably need to first review spherical
coordinates for themselves.

Remember that rho is the distance from the origin. Phi is the angle down from the z
axis. So, it's zero, and the positive z axis, pi over two in the xy plane, and increases
all the way to pi on the negative z axis. And, theta is the angle around the z axis. So,



now, when we set up bounds here, it will look a lot like what you've done in polar
coordinates in the plane because when you look at the inner bound down on rho, for
a fixed phi and theta, that means you're shooting a straight ray from the origin in
some direction in space.

So, you know, you're sending a laser beam, and you want to know what part of your
beam is going to be in your given solid. You want to solve for the value of rho when you
enter the solid and when you leave it. I mean, very often, if the origin is in your solid,
then rho will start at zero. Then you want to know when you exit. And, I mean,
there's a fairly small list of kinds of surfaces that we've seen how to set up in
spherical coordinates. So, if you're really upset by this, go over the problems in the
notes. That will give you a good idea of what kinds of things we've seen in spherical
coordinates.

OK, and then evaluation is the usual way. Questions about this? No? OK, so, I should
say we can do something bad, but so we've seen, of course, applications of this. So, we
should know how to use a triple integral to evaluate things like a mass of a solid,
the average value of a function, the moment of inertia about one of the coordinate
axes, or the gravitational attraction on a mass at the origin.

OK, so these are just formulas to remember for examples of triple integrals. It
doesn't change conceptually. You always set them up and evaluate them the same
way. It just tells you what to put there for the integrand. Now, double integrals: so,
when we have a surface in space, well, what we will integrate on it, at least what
we've seen how to integrate is a vector field dotted with the unit normal vector times
the area element. OK, and this is sometimes called vector dS.

Now, how do we evaluate that? Well, we've seen formulas for ndS in various
settings. And, once you have a formula for ndS, that will relate ndS to maybe dx dy,
or something else. And then, you will express, so, for example, ndS equals
something dx dy. And then, it becomes a double integral of something dx dy. Now,
in the integrand, you want to express everything in terms of x and y. So, if you had
a z, maybe you have a formula for z in terms of x and y. And, when you set up the
bounds, well, you try to figure out what are the bounds for x and y? That would be
just looking at it from above. Of course, if you are using other variables, figure out
the bounds for those variables.

And, when you've done that, it becomes just a double integral in the usual sense.
OK, so maybe I should be a bit more explicit about formulas because there have
been a lot. So, let me tell you about a few of them. Let me actually do that over here
because I don't want to make this too crowded. OK, so what kinds of formulas for
ndS have we seen? Well, we've seen a formula, for example, for a horizontal plane,
or for something that's parallel to the yz plane or the xz plane. Well, let's do just the
yz plane for a quick reminder. So, if I have a surface that's contained inside the yz
plane, then obviously I will express ds in terms of, well, I will use y and z as my
variables. So, I will say that ds is dy dz, or dz dy, whatever's most convenient.

Maybe we will even switch to polar coordinates after that if a problem wants us to.
And, what about the normal vector? Well, the normal vector is either coming straight
at us, or it's maybe going back away from us depending on which orientation we've
chosen. So, this gives us ndS. We dot our favorite vector field with it. We integrate,
and we get the answer. OK, we've seen about spheres and cylinders centered at the
origin or centered on the z axis. So, the normal vector sticks straight out or straight



in, depending on which direction you do it in. So, for a sphere, the normal vector is
<X, y, z> divided by the radius of the sphere.

For a cylinder, it's <x, y, 0>, divided by the radius of a cylinder. And, the surface
element on a sphere, so, see, it's very closely related to the volume element of
spherical coordinates except you don't have a rho anymore. You just plug in a rho
equals a. So, you get a squared sine phi d phi d theta. And, for a cylinder, it would
be a dz d theta. So, by the way, just a quick check, when you're doing an integral, if
it's the surface integral, there should be two integral signs, and there should be two
integration variables. And, there should be two d somethings. If you end up with a
dx, dy, dz in the surface integral, something is seriously wrong.

OK, now, besides these specific formulas, we've seen two general formulas that are
also useful. So, one is, if we know how to express z in terms of x and y, and just to
change notation to show you that it's not set in stone, let's say that z is known as a
function z of x and y. So, how do I get ndS in that case? Well, we've seen a formula
that says negative partial z partial x, negative partial z partial y, one dx dy. So, this
formula relates the volume, sorry, the surface element on our surface to the area
element in the xy plane. It lets us convert between dS and dx dy.

OK, so we just plug in this, and we dot with F, and then we substitute everything in
terms of x and y, and we evaluate the integral over x and y. If we don't really want
to find a way to find z as a function of x and y, but we have a normal vector given to
us, then we have another formula which says that ndS is, sorry, I should have said
it's always up to sign because we have a two orientation convention.

We have to decide based on what we are trying to do, whether we are doing the
correct convention or the wrong one. So, the other formula is n over n dot k dx dy.
Sorry, are they all the same? Well, if you want, you can put an absolute value here.
But, it doesn't matter because it's up to sigh anyway. So, I mean, this formula is
valid as it is. OK, and, I mean, if you're in a situation where you can apply more than
one formula, they will all give you the same answer in the end because it's the same
flux integral. OK, so anyway, so we have various ways of computing surface
integrals, and probably one of the best possible things you can do to prepare for the
test is actually to look again at some practice problems from the notes that do flux
integrals over various kinds of surfaces because that's probably one of the hardest
topics in this unit of the class.

OK, anyway, let's move on to line integrals. So, those are actually a piece of cake in
comparison, OK, because all that this is, is just integral of P dx Q dy R dz. And, then
all you have to do is parameterize the curve, C, to express everything in terms of a
single variable. And then, you end up with a usual single integral, and you can just
compute it. So, that one works pretty much as it did in the plane. So, if you
forgotten what we did in the plane, it's really the same thing.

OK, so now we have three different kinds of integrals, and really, well, they certainly
have in common that they integrate things somehow. But, apart from that, they are
extremely different in what they do. I mean, this one involves a function, a scalar
quantity. These involve vector quantities. They don't involve the same kinds of
shapes over which to integrate. Here, you integrate over a three-dimensional region.
Here, you integrate only over a two-dimensional surface, and here, only a one-
dimensional curve. So, try not to confuse them. That's basically the most important



advice. Don't get mistaken. Each of them has a different way of getting evaluated.
Eventually, they will all give you numbers, but through different processes.

So now, well, I said these guys are completely different. Well, they are, but we still
have some bridges between them. OK, so we have two, maybe I should say three,
well, two bridges between these guys. OK, so we have somehow a connection
between these which is the divergence theorem. We have a connection between
that, which is Stokes theorem. So -- Just to write them again, so the divergence
theorem says if I have a region in space, and I call its boundary S, so, it's going to
be a closed surface, and I orient S with a normal vector pointing outwards, then
whenever I have a surface integral over S, sorry, I can replace it by a triple integral
over the region inside.

OK, so this guy is a vector field. And, this guy is a function that somehow relates to
the vector field. I mean, you should know how. You should know the definition of
divergence, of course. But, what I want to point out is if you have to compute the
two sides separately, well, this is just, you know, your standard flux integral. This is
just your standard triple integral over a region in space. Once you have computed
what this guy is, it's really just a triple integral of the function.

So, the way in which you compute it doesn't see that it came from a divergence. It's
just the same way that you would compute any other triple integral. The way we
compute it doesn't depend on what actually we are integrating. Stokes theorem says
if I have a curve that's the boundary of a surface, S, and I orient the two in
compatible manners, then I can replace a line integral on C by a surface integral on
S.

OK, and that surface integral, well, it's not for the same vector field. This relates a
line integral for one field to a surface integral from another field. That other field is
given from the first one just by taking its curl So, after you take the curl, you obtain
a different vector field. And, the way in which you would compute the surface
integral is just as with any surface integral. You just find a formula for ndS dot
product, substitute, evaluate. The calculation of this thing, once you've computed
curl does not remember that it was a curl. It's the same as with any other flux
integral. OK, and finally, the last bridge, so this was between two and three. This
was between one and two.

Let me just say, there's a bridge between zero and one, which is that if you have a
function in its gradient, well, the fundamental theorem of calculus says that the line
integral for the vector field given by the gradient of a function is actually equal to the
change in value of a function. That's if you have a curve bounded by PO and P1. So
in a way, actually, each of these three theorems relates a quantity with a certain
number of integral signs to a quantity with one more integral sign.

And, that's actually somehow a fundamental similarity between them. But maybe it's
easier to think of them as completely different stories. So now, with this one, we
additionally have to remember another topic is given a vector field, F, with curl equal
to zero, find the potential. And, we've seen two methods for that, and I'm sure you
remember them. So, if not, then try to remember them for Tuesday. OK, so anyway,
again, conceptually, we have, really, three different kinds of integrals. We evaluated
them in completely different ways, and we have a handful of theorems, connecting
them to each other. But, that doesn't have any impact on how we actually compute
things.



OK, have a nice weekend. Try to get some work for the test. Try to get some sleep
as well, and see you on Tuesday.



