Theo yéu cu cia khich hing, trong mft nim
qua, ching t6i 438 djch qua 16 mdn hoc, 34
cudn séch, 43 bai béo, 5 sb tay (chwa tinh cic
tai liéu tir nim 2010 tré vé treéc) Xem & diy

DICH VU Chi sau moét lan Lién lac, viéc

DJCH
TIENG

ANH

CHUYRN [Gia ca cé thé
RN R —
NHANH

NHAT VA Chat luong:Tao dung niém tin cho

dich duoc tién hanh

giam den 10

khach hang bing cdng nghé 1.Ban

XAcC
NHAT

th."fl'y duoc toan bo ban dich; 2.Ban
danh gia chat luwong. 3.Ban quyét

dinh thanh toan.

Tai liéu nay dwoc dich sang tiéng viét béi:

WV I ey v L Can

Tir ban géc:
https://drive.google.com/folderview?id=0B4rAPqlxl MRDNkFJeUpfVUtLbk0&usp=sharing

Lién hé dich tai liéu :)
thanhlam1910 2006@yahoo.com hoac frowrthes@gmail.com hoac s6 0168 8557 403

o (9ap Lam)
Tim hiéu ve dich vu: http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

Using Datalog for Fast and Easy
Program Analysis 5 h'15

Abstract. Our recent work introduced
the Doop framework for points-to
analysis of Java programs. Although
Datalog has been used for points-to
analyses Dbefore, Doop is the first
implementation to express full end-to-
end context-sensitive analyses in
Datalog. This includes key elements
such as call-graph construction as well
as the logic dealing with various
semantic complexities of the Java
language (native methods, reflection,
threading, etc.).

Str dung Datalog dé phén tich chuong
trinh nhanh va dé dang

T6m tit. Trong cong trinh ndy chdng
toi gioi thiéu khung lam viéc (bo
khung) Doop dé phan tich tro cac
chuong trinh Java. Mac du trudc day
Datalog di duoc dung dé phan tich
tro, Doop 1a hé thong xu 1y dau tién
thé hién day du phan tich nhay ngir
canh end-to-end trong Datalog. Doop
bao gom cac thanh phan quan trong
chang han nhu tao d6 thi goi ciing
nhu xt ly logic nhitng phuc tap ngi
nghia khac nhau cta ngbn ngir Java
(native methods, kha ning phuc hoi
dong, ludng, v.v...).

end-to-end: tir dau cudi dén dau cudi,

https://drive.google.com/folderview?id=0B4rAPqlxIMRDNkFJeUpfVUtLbk0&usp=sharing
mailto:thanhlam1910_2006@yahoo.com
mailto:frbwrthes@gmail.com
http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

The findings from the Doop research
effort have been surprising. We set out
to create a framework that would be
highly complete and elegant without
sacrificing performance “too much”.
By the time Doop reached maturity, it
was a full order-of-magnitude faster
than Lhotak and Hendren’s Paddle—
the state-of-the- art framework for
context-sensitive points-to analyses.
For the exact same logical points-to
definitions (and, consequently,
identical precision) Doop is more than
15x faster than Paddle for a 1 -call-site
sensitive analysis, with lower but still
sub- stantial speedups for other
important analyses. Additionally, Doop
scales to very precise analyses that are
Impossible with prior frameworks,
directly addressing open problems in
past literature. Finally, our
implementation is modular and can be
easily configured to analyses with a
wide range of characteristics, largely
due to its declarativeness.

Although this performance difference
is largely attributable to architectural
choices (e.g., the use of an explicit
representation vs. BDDs), we believe
that our ability to efficiently optimize
our implementation was largely due to
the declarative specifications of
analyses. Working at the Datalog level
eliminated much of the artificial
complexity of a points-to analysis

gitra hai dau nut.

implementation, allowing us to
concentrate on indexing optimizations
and on the algorithmic essence of each
analysis.

1 Introduction

Points-to analysis is one of the most
fundamental static program analyses. It
consists of computing a static
approximation of all the data that a
pointer variable or expression can
reference during program run-time.
The analysis forms the basis for
practically every other program
analysis and is closely inter-related
with mechanisms such as call-graph
construction, since the values of a
pointer determine the target of
dynamically resolved calls, such as
object-oriented dynamically dispatched
method calls or functional lambda
applications.

In recent work [1, 2], we presented
DOOP: a versatile points-to analysis
framework for Java programs. DOOP
Is crucially based on the use of Datalog
for specifying the pro- gram analyses,
and on the aggressive optimization at
the Datalog level, by programmer-
assisted indexing of relations so that
highly recursive Datalog programs
evaluate near- optimally. The
optimization approach accounts for
several orders of magnitude of
performance improvement:
unoptimized analyses typically run
over 1000 times more slowly. The
result is quite surprising: compared to
the prior best-comparable system
DOOP often achieves speedups of an
order-of-magnitude (10x or more) for
several im- portant analyses, while
yielding identical results. This
performance improvement is not

caused by any major algorithmic
innovation: we discuss in Section 3
how performance is largely a
consequence of the optimization
opportunities afforded by using a
higher- level programming language
(Datalog). Declarative specifications
admit automatic op- timizations and at
the same time enable the user to
identify and apply straightforward
manual optimizations.

An important aspect of Doop is that it
Is full-featured and “all Datalog”. That
is, Doop is a rich framework,
containing context insensitive, call-site
sensitive, and object- sensitive analyses
for different context depths, all
specified modularly as variations on a
common code base. Additionally, Doop
achieves high levels of completeness,
as it handles complex Java language
features (e.g., native code, finalization,
and privileged actions). As a result,
Doop emulates and often exceeds the
rich feature set of the Pad- DLE
framework [7], which is the state-of-
the-art in terms of completeness for
complex, context-sensitive analyses.
All these features are implemented
entirely in Datalog, i.e., declaratively.
Past points-to analysis frameworks
(including those using Datalog) typi-
cally combined imperative computation
and some declarative handling of the
core anal- ysis logic. For instance, the
bddbddb system [10,11] expresses the
core of a points- to analysis in Datalog,
while important parts (such as
normalization and call-graph
computation—except for simple,
context-insensitive, analyses) are done
in Java code. It was a surprise to
researchers even that a system of such
complexity can be usefully

implemented declaratively. Lhotak [6]
writes: “[E]ncoding all the details of a
com- plicated program analysis
problem (such as the interrelated
analyses [on-the-liy call graph
construction, handling of Java
features]) purely in terms of subset
constraints [i.e., Datalog] may be
difficult or impossible."

The more technical aspects of DOOP
(including the analysis algorithms and
fea- tures, as well as our optimization
methodology) are well-documented in
prior publica- tions [1,2,9]. Here we
only intend to give a brief introduction
to the framework and to extrapolate on
our lessons learned from the DOOP
work.

2 Background: Points-To Analysis
in Datalog

Doop’s primary defining feature is the
use of Datalog for its analyses.
Architecturally, however, an important
factor in Doop’s performance
discussion is that it employs an explicit
representation of relations (i.e., all
tuples of a relation are represented as
an explicit table, as in a database),
instead of using Binary Decision
Diagrams (BDDs), which have often
been considered necessary for scalable
points-to analysis [6,7,10,11].

We use a commercial Datalog engine,
developed by LogicBlox Inc. This
version of Datalog allows “stratified

negation”, i.e., negated clauses, as long
as the negation is not part of a recursive
cycle. It also allows specifying that
some relations are functions, i.e., the
variable space is partitioned into
domain and range variables, and there
Is only one range value for each unique
combination of values in domain
variables.

Datalog is a great fit for the domain of
program analysis and, as a
consequence, has been extensively
used both for low-level [5,8,11] and for
high-level [3,4] anal- yses. The essence
of Datalog is its ability to define
recursive relations. Mutual recursion is
the source of all complexity in program
analysis. For a standard exam- ple, the
logic for computing a callgraph
depends on having points-to
information for pointer expressions,
which, in turn, requires a callgraph. We
can easily see such recursive
definitions in points-to analysis alone.
Consider, for instance, two relations,
AssignHeapAllocation(?heap, ?var)
and Assign(?to, ?from).

(We follow the Doop convention of
capitalizing the first letter of relation
names, while writing variable names in
lower case and prefixing them with a
question-mark.) The former relation
represents all occurrences in the Java
program of an instruction “a = new A()
; 7 where a heap ob- ject is allocated
and assigned to a variable. That is, a
pre-processing step takes a Java
program (in Doop this is in
intermediate, bytecode, form) as input
and produces the re- lation contents. A

static abstraction of the heap object is
captured in variable ?heap—it can be
concretely represented as, e.g., a fully
qualified class name and the
allocation’s bytecode instruction index.
Similarly, relation Assign contains an
entry for each assignment between two
Java program (reference) variables.

The mapping between the input Java
program and the input relations is
straightfor- ward and purely syntactic.
After this step, a simple pointer
analysis can be expressed entirely in
Datalog as a transitive closure
computation:

1 VarPointsTo(?heap, ?var) <-
AssignHeapAllocation(?heap, ?var).

2 VarPointsTo(?heap, ?t0) <-
Assign(?to, ?from),
VarPointsTo(?heap, ?from).

The Datalog program consists of a
series of rules that are used to establish
facts about derived relations (such as
VarPointsTo, which is the points-to
relation, i.e., it links every program
variable, ?var, with every heap object
abstraction, ?heap, it can point to) from
a conjunction of previously established
facts. In our syntax, the left arrow
symbol (<-) separates the inferred fact
(the head) from the previously
established facts (the body).

The key for a precise points-to analysis
IS context-sensitivity, which consists of
qual- ifying program variables (and
possibly object abstractions—in which
case the context- sensitive analysis is
said to also have a context-sensitive
heap), with context informa- tion: the

analysis collapses information (e.g.,
“what objects this method argument
can point to”) over all possible
executions that result in the same
context, while separating all
information for different contexts.
Object-sensitivity and call-site-
sensitivity are the main flavors of
context sensitivity in modern points-to
analyses. They differ in the con- texts
of a context, as well as in when
contexts are created and updated. Here
we will not concern ourselves with
such differences—it suffices to know
that a context-sensitive analysis
qualifies its computed facts with extra
information.

Context-sensitive analysis in Doop is,
to a large extent, similar to the above
context- insensitive logic. The main
changes are due to the introduction of
Datalog variables representing contexts
for variables (and, in the case of a
context-sensitive heap, also objects) in
the analyzed program. For an
illustrative example, the following two
rules handle method calls as implicit
assignments from the actual parameters
of a method to the formal parameters,
In a 1-context-sensitive analysis with a
context-insensitive heap. (This code is
the same for both object-sensitivity and
call-site-sensitivity.)

(Note that some of the above relations
are functions, and the functional no-
tation “Relation[?domainvar] = ?val” is
used instead of the relational notation,
“Relation(?domainvar, ?val)”.
Semantically the two are equivalent,
only the exe- cution engine enforces
the functional constraint and produces

an error if a computation causes a
function to have multiple range values
for the same domain value.)

The example shows how a derived
Assign relation (unlike the input
relation Assign in the earlier basic
example) is computed, based on the
call-graph information, and then used
in deriving a context-sensitive
VarPointsTo relation.

For deeper contexts, one needs to add
extra variables, since pure Datalog does
not allow constructors and therefore
cannot support value combination. We
have introduced in DOOP a macro
system to hide the number of context
elements so that such variations do not
pollute the analysis logic.

Generally, the declarative nature of
DOOP often allows for very concise
specifica- tions of analyses. We show
in an earlier publication [2] the striking
example of the logic for the Java cast
checking—i.e., the answer to the
question “can type A be cast to type
B?” The Datalog rules are almost an
exact transcription of the Java
Language Specification. A small
excerpt, with the Java Language
Specification text included in
comments, can be seen in Figure 1.

3 Discussion: Doop and Large-
Scale Development in Datalog

Perhaps the main lesson learned from
our experience with Doop and its
definition in Datalog is quite simple:
Datalog is not an abstract logic and
does not magically yield
automaticprogramming capabilities,
but it is still much higher-level than
currentmain- stream programming
languages.

Recent Datalog research has often
concentrated on generalizing the
language (to full first-order logic and
higher-order logics), and on applying
automated reasoning tech- niques.
Although this is certainly a valuable
direction, we believe that one should
not lose sight of the fact that Datalog is
already a very high-level language
when compared to mainstream general
purpose languages, such as Java, C++,
or C#. It is, therefore, perhaps more
interesting to examine Datalog not as a
proxy for a logic but as an ap- plication
programming language. Many of the
benefits that we obtained with DOOP
are

Fig. 1. Excerpt of Datalog code for
Java cast checking, together with Java
Language Specification text in
comments. The rules are quite faithful
to the specification.

directly due to such an approach. Of
course, this raises the question of
whether plain Datalog is expressive
enough for general application
programming. As we saw, even for the
domain of points-to analysis,
researchers were highly skeptical of the
feasibility of expressing all elements
(including those consisting mostly of
tedious engineering) of a complex
analysis in Datalog. We believe that
this is precisely what is missing at this
point in the evolution of Datalog. The
language needs to be developed as a
real programming language, with
appropriate library support (for, e.g.,
graphics, communi- cation, etc., APIs),
tool support, a mature engine (for
advanced automatic optimization of

rule evaluation and efficient
representation of relations), and
possibly expressive- ness
enhancements (e.g., macros,
exponential-search, or other high-order
capabilities). A final element, which
we are still debating whether it is
essential or an intermedi- ate state, is
the ability to manually optimize a
Datalog program, by exposition of an
easy-to-understand cost model and
appropriate interfacing with the engine.
Such arguments are easy to see in the
context of DOOP. The use of Datalog
in DOOP is certainly not as a logic.
DOOP is not written as an abstract
specification that a clever runtime
system automatically optimizes and
executes efficiently. We needed to
develop an optimization methodology
for highly recursive programs and to
introduce indexes manually, in order to
attain optimal performance. The
difference in performance be- tween
optimized and unoptimized DOOP
rules is enormous. At the same time,
DOORP is expressed at a much higher
level than a similar implementation of a
points-to analysis in Java or C++. The
declarativeness of Datalog and the
suitability of the LogicBlox Datalog
platform for application development
were crucial for DOOP in more than
one way:

. We relied on query optimization
(i.e., intra-rule, as opposed to inter-rule,
optimiza- tion) being performed
automatically. This was crucial for

performance and, although a
straightforward optimization in the
context of database relations, results in
far more automation than programming
in a mainstream high-level language.

. The declarativeness and
modularity of Doop specifications
contributed directly to per- formance.
The surprisingly high performance of
Doop compared to past frameworks is
due to combining two factors: simple
algorithmic enhancements, and an
explicit representation instead of
BDDs. Eliminating either of these
factors results in com- plete lack of
scalability in Doop. For instance, an
explicit representation alone makes
many standard analyses infeasible in
Doop: even a 1H-object-sensitive
analysis (i.e., 1-object-sensitive with a
context-sensitive heap) would be
completely infeasible for realistic
programs. Nevertheless, we observed
that this lack of scalability was due to
very high redundancy (i.e., large sizes
of some relations without an increase in
anal- ysis precision) in the data that the
analysis was computing. The
redundancy was easy to eliminate with
two simple algorithmic enhancements:
1) we perform exception analysis on-
the-fly [1], computing contexts that are
reachable because of exceptional
control flow while performing the
points-to analysis itself. The on-the-fly
exception analysis significantly
improves both precision and
performance; 2) we treat static class
initializers context-insensitively (since
points-to results are equivalent for all
contexts of static class initializers), thus
improving performance while keeping

identical pre- cision. These
enhancements (especially the former,
which results in highly recursive
definitions of core relations) would be
quite hard to consider in a non-
declarative con- text. In Doop, such
enhancements could be added with
minor changes to the rules or with just
the addition of extra rules. Once
redundancy is eliminated via our
algorith- mic enhancements, an explicit
representation (with the help of our
index optimiza- tions) becomes much
faster than using BDDs.

Based on our experience, we believe
that Datalog can have a bright future
for ap- plication development. In a
programming setting that has a dire
need for higher-level programming
abstractions, Datalog holds a great
promise. The elements missing in order
to fulfill this promise are not in the
direction of greater declarativeness and
auto- mated reasoning abilities.
Pursuing more complete-logic-like
variants of Datalog may turn out to be
an unreachable goal and is certainly not
what is missing in practice: Dat- alog is
already much more declarative than the
mainstream languages currently used
for application programming. Instead,
it is practical elements that are missing
and that can propel actual Datalog
implementations to the mainstream. An
interesting question is whether it is
necessary for a programmer to treat a
Datalog program as a program and not
as a specification, i.e., whether the
programmer should have the ability to
un- derstand and manually influence
the program’s execution cost.

In summary, the Doop framework has
raised the bar in the domain of points-
to analysis by introducing fast,
modular, and scalable implementations
of precise points- to analysis
algorithms, while yielding important
lessons about the architecture of such
implementations. At the same time,
however, we hope that Doop will be
representative of future successes for
Datalog application development as a
whole.

Acknowledgments This work was
funded by the NSF (CCF-0917774,
CCF-0934631) and by LogicBlox Inc.

