Theo yéu cu cia khich hing, trong mft nim
qua, ching t6i 438 djch qua 16 mdn hoc, 34
cudn séch, 43 bai béo, 5 sb tay (chwa tinh cic
tai liéu tir nim 2010 tré vé treéc) Xem & diy

DICH VU Chi sau moét lan Lién lac, viéc
dich duoc tién hanh

DJCH
TIENG

ANH |
CHUYERN Gii ca: c¢6 thé giam dén 10

R R —
NHANH

NHAT VA Chat luong:Tao dung niém tin cho
khach hang bﬁn cdng nghé 1.Ban

XAcC
NHAT

théiy duoc toan bo ban dich; 2.Ban
danh gia chat luwong. 3.Ban quyét

dinh thanh toan.

Tai liéu nay dwoc dich sang tiéng viét béi:

WV I ey v L Can

Tir ban géc:

https://drive.google.com/folderview?id=0B4rAPqlxl MRDNkFJeUpfVUtLbk0&usp=sharing

Lién hé dich tai liéu :

thanhlam1910 2006@yahoo.com hoic frowrthes@gmail.com hoic s6 0168 8557 403 (gap

Tim hiéu vé dich vu: http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

Lam)

for Charge
Transport in Large Scale Materials
Systems at the Bremen Center for
Computational Materials Science in
Bremen, Germany. It demonstrates
some of the possible uses of the

DFTB+ code for calculating
geometries, electronic structures and
electron transport properties of

Loat bai huéng dan nay duoc trinh
bay vao Thang Muoi 2014 tai Hoi
thao CECAM vé Cac Md Hinh Van
Chuyén bién Tich Hiéu Qua Cao
trong Cac Hé Vat Liéu Quy Mo
Lén tai Trung Tam Khoa Hoc Vat
Liéu Bremen & Bremen, bic. Loat
bai nay dé cap dén viéc dung code
DFTB+ dé tinh toan dang hinh hoc,
cau tric dién tir va tinh chét van
chuyén electron cua cac vat liéu



https://drive.google.com/folderview?id=0B4rAPqlxIMRDNkFJeUpfVUtLbk0&usp=sharing
mailto:thanhlam1910_2006@yahoo.com
mailto:frbwrthes@gmail.com
http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

various 2D carbon materials. It is
aimed at Master and starting PhD-
students with background knowledge
of the theory of electronic structure
and electron transport. Minimal
knowledge of Unix is also required.
Knowledge of the DFTB+ code itself
IS not necessary, but familiarity with
the basic ideas behind the Density
Functional Tight Binding (DFTB)
method could be helpful.

2.1 Perfect graphene

2.1.1 Geometry, density of state:
Graphene has a hexagonal lattice with
two C atoms in its primitive unit cell,
which is specified in the supplied
GEN-formatted geometry file. Open
the file geo.gen in a text editor
leafpad geo.gen &. You should see
the following content:

The format of this GEN file is the
following:

The first line contains the number of
atoms (2) and the boundary condition
type (S for solid). The second line
lists all atomic elements present in the
system separated by white space (C
only in this example). Then a squence
of lines follow, one for every atom in
the system, each starting with a
dummy integer (its sequential number
in the structure), the type of the atom
according to the list of elements in
the second line of the file (1 for
carbon in this example), and finally
the cartesian coordinates of the atom
in angstroms. Since the structure is
periodic, appropriate information for
this boundary condition must be
provided after the atomic coordinates.
For a GEN file of type S, this is the
cartesian coordinates of the origin
followed by the 3 cartesian lattice
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vectors (one per line). DFTB+ uses
three dimensional periodic boundary
conditions. In order to separate the
graphene sheets from each other and
to prevent interaction between them,
the third lattice vector, which is
orthogonal to the plane of graphene,
has been chosen to have a length of
50 angstroms. Before running the
code, you should check, whether the
specified unit cell, when repeated
along the lattice vectors, indeed
results in a proper graphene structure.
To repeat the geometry along the first
and second lattice vectors a few times
(the repeatgen script), convert it to
XYZ-format (the gen2xyz script) and
visualize it:

You should then see a graphene sheet
displayed, similar to Figure 4x4x1
graphene supercell (page 4). Figure
2.1: 4x4x1 graphene supercell. You
should see the following options
within it:

First we include the GEN-formatted
geometry file, geo.gen, using the
inclusion operator (<< <):

Then we specify the
ConjugateGradient dri ver to optimize
the geometry and a Iso the lattice
vectors. Since neither the angle
between the lattice vectors nor their
relative lengths should change during
optimization, we carry out an
Isotropic lattice optimization:

Then the details of the DFTB
hamiltonian follow:

Within this block, we first specify the
location of the parametrization files
(the Slater-Koster files) and provide
additional information about the




highest angular momentum for each
element (this information is not yet
stored in the Slater-Koster-files):

Please note, that the highest angular
momentum is not a free parameter to
be changed, but it must corre-spond
to the wvalue given in the
documentation  section of the
correspoding homonuclear Slater-
Koster-files (e.g. see the C-C.skf file
for carbon). We wuse the self-
consistent charge approach (SCC-
DFTB), enabling charge transfer
between the atoms: SCC = Yes

As graphene is metallic we smear the
filling function to achieve better
SCC-convergence:

For the Brillouin-zone sampling we
set our k-points according to the 48 x
48 x 1 Monkhorst-Pack sampling
scheme. This contains those k-points
which would be folded onto the k-
point (0.5, 0.5, 0.0) of an enlarged
supercell consisting of the primitive
unit cell repeated by (48, 0, 0), (0, 48,
0) and (0, 0, 1). This can be easily
specified with the SupercellFolding
option, where one defines those
supercell vectors followed by the
target k-point. We also want to do
some  additional  analysis by
evaluating the contributions of the s-
and p-shells to the density of states
(DOS). Accordingly, we instruct
DFTB+ in the Analysis block to
calculate the contribution of all C
atoms to the DOS in a shell-wise
manner (s and p) and store the shell-
contributions in files starting with a
prefix of pdos.C:

Analysing results: The very first thing
you should check is whether your




calculation has converged at all to a
relaxed geometry. The last line of the
output file contains the appropriate
message:

Geometry converged. This means that
the program stopped because the
forces on the atoms which are
allowed to move (all of them in this
example) were less than a given
tolerance (specified in the option
MaxForceComponent, which defaults
to le-4 atomic units) and not instead
because the maximal number of
geometry optimization steps have
been executed (option MaxSteps,
default 200).You should visualize the
resulting structure using Jmol (or any
other molecular visualization tool).
You should probably repeat the
geometry again to get a better idea
how it looks like, as we did for the
starting structure above. The distance
between the C atoms should be very
similar to those in the initial
structure.In order to visualize the
density of states and the partial
density of states, you should convert
the corresponding human readable
files (with prefix .out) to XY-format
data. Please note the flag -w, which is
mandatory when converting partial
density of states data for plotting.
You can obtain more information
about various flags for dp_dos by
Issuing:

You can visualize the DOS and the
PDOS for the s- and p-shells of
carbon in one picture using the plotxy
tool, which is a simple command line
wrapper around the matplotlib python
library (issue the command plotxy -h




for help):

You can use also any other program
(gnuplot, xmgrace) which can
visualize XY-data. You should see
something similar to Figure DOS and
PDOS of graphene (page 7).The
position of the Fermi level (at -4.67
eV) can be read out from the
detailed.out file, either directly or by
using an appropriate grep command:

Figure 2.2: DOS and PDOS of
graphene. As expected for graphene,
the DOS vanishes at the Fermi-level.
Around the Fermi-level, all states are
composed of the p-orbitals of the
carbons, the s-orbitals only contribute
to energeticaly much lower and much
higher states. Also, one can observe
the  van-Hove-singularties.  The
wiggles at around 0 eV and at higher
energy are artifacts. Using more k-
points for the  Brillouin-zone
sampling or using a slightly wider
broadening function in dpdos would
smooth them out.

2.1.2 Band structure : Band structure
calculations in DFTB always consist
of two steps:

1.Calculating an accurate ground state
charge density by using a high quality
k-point sampling.

2.Determining the eigenvalues at the
desired k-points of the band structure,
using the density obtained in the
previous step. The density is not
changed during this step of the band
structure calculation.

Step 1 you just have executed, so you
can copy the final geometry and the
data file containing the converged
charges from that calculation into




your current working directory:

Have a look on the dftb_in.hsd file
for the band structure calculation. It
differs from the previous one only in
a few aspects:

We use the end geometry of the
previous calculation as geometry:

We need static calculation only (no
atoms should be moved), therefore,
no driver block has been
specified. The k-points are specified
along specific high symmetry lines of
the Brillouin-zone (K-Gamma-M-K):

We initialize the calculation with the
charges stored during the previous
run:

We do not want to change the charges
during the calculation, therefore, we
set the maximum number of SCC
cycles to one: Let's run the code and
convert the band structure output to
XY -format:

The dp_bands tool extracts the band
structure from the file band.out and
stores it in the file band_tot.dat. For
spin polarized systems, the name of
the output file would be different.
Use:

to get help information about the
arguments and the possible options
for dp_bands.In order to investigate
the band structure we first look up the
position of the Fermi level in the
previous calculation performed with
the accurate k-sampling which yields
-4.67 eV, and then visualize the band
structure by invoking. This results in
the band structure as shown in Figure
Band structure ofgraphene (page 8).

Figure 2.3: Band structure of
graphene. You can see the linear




dispersion relations around the point
K in the Brillouin-zone (k-points 0
and 51 in our circuit) which is a very
typical characteristic of graphene.

2.2  Zigzag nanoribbon: Next we
will study some properties of a
hydrogen saturated carbon zigzag
nanoribbon.

2.2.1 Calculting the density and DOS:
The initial geometry for the zigzag
nanoribbon contains one chain of the
structure, repeated periodically along
the z-direction. The lattice vectors
orthogonal to the periodicity (along
the x- and y- axis) are set to be long
enough to avoid any interaction
between the repeated images. First
convert the GEN-file to XYZ-format
and visualize it:

Similar to the case of perfect
graphene, you should check first the
initial geometry by repeating it along
the periodic axis (the third lattice
vector in this example) and visualize
it. The necessary steps are collected
in the file checkgeo.sh. Please have a
look at its content to understand what
will happen, and then issue to obtain
the molecule shown in Figure Section
of an H-saturated zigzag nanoribbon

(page 9).

Figure 2.4: Section of an H-saturated
zigzag nanoribbon. The control file
dftb_in.hsd is similar to the previous
examples, with a few differences
only:

We use the 1 x 1 x 24 Monkhorst-
Pack k-point set to sample the
Brillouin-zone, since the ribbon is
only periodic along the direction of
the third lattice vector. The two other




lattice vectors have been choosen to
be long enough to avoid interaction
between the artificially repeated
ribons.:

In order to analyze, which atoms
contribute to the states around the
Fermi-level, we create four projection
regions containing the saturating H-
atoms, the C atoms in the outermost
layer of the ribbon, the C atoms in the
second outermost layer and finally
the C atoms in the thirds outermost
layer, respectively. Since the ribbon
IS mirror symmetric, we include the
corresponding atoms on both sides in
each projection region:

When the program has finished, look
up the Fermi-level and visualize the
DOS and PDOS contributions. The
necessary commands are collected in
showdos.sh:

When you zoom into the area around
the Fermi level (-4.57 eV), you
should obtain something like Figure
DOS of the zigzag nanoribbon around
the Fermi energy (page 10).

Figure 2.5: DOS of the zigzag
nanoribbon around the Fermi energy.
states around the Fermi-level are
composed of the orbitals of the C
atoms in the outermost and the third
outermost layer of the ribbon. There
Is no contribution from the C atom in
the layer in between or from the H
atoms to the Fermi level.

2.2.2 Band structure

Now let’s calculate the band structure
of the zigzag nanoribbon. The
commands are in the script run.sh, so
just issue: ./run.sh. You will see
DFTB+ finishing with an error
message ERROR! SCC is NOT
converged, maximal SCC iterations




exceeded. Normally, it would mean
that DFTB+ did not manage to find a
self consistent charge distribution for
its last geometry. In our case,
however, it is not an error, but the
desired behaviour. We have specified
in dftb_in.hsd the options
ReadInitialCharges = Yes
MaxSCClterations = 1 requiring the
program to stop after one SCC
iteration. The charges are at this point
not self consistent with respect to the
k-point set used for sampling the
band structure calculation. However,
k-points along high symmetry lines of
the Brillouin-zone, as used to obtain
the band structures, usually represent
a poor sampling. Therefore the a
converged density obtained with an
accurate k-sampling should be used
to obtain the eigenlevels, and no self
consistency is needed. To look up the
Fermi-level and plot the band
structure use the commands in
showbands.sh: /showbands.sh. You
should obtain a band structure similar
to Figure Band structure of the zigzag
nanoribbon (page 11).

Figure 2.6: Band structure of the
zigzag nanoribbon. Again, one can
see, that there are states around the
Fermi-energy, so the nanoribbon is
metallic.

2.3 Armchair nanoribbon  with
defects: We now investigate a
hydrogen saturated armchair carbon
nanoribbon, examining both the
perfect ribbon and two defective
structures, each with a vacancy at a
different position in the ribbon. In
order to keep the tutorial short, we
will not relax the vacancies, but will




only remove one atom from the
perfect structure.

2.3.1 Perfect armchair nanoribbon
Total energy and density of state: The
steps to calculate the DOS of the
perfect H-saturated armchair
nanoribbon are the same as for the
zigzag case. First check the geometry
with the help of repeated supercells:
Jcheckgeo.sh. You will see a
repeated image of the perfect
armchair nanoribbon unit cell (Figure
Perfect armchair nanoribbon unit cell
(page 12)).Figure 2.7: Perfect
armchair nanoribbon unit cell. The
edge of the ribbon is visually
different from the zigzag case. As it
turns out, this also has some physical
consequences. Let's calculate the
electronic density and extract the
density of states: ./run.sh. If you look
up the calculated Fermi-level and
then visualize the DOS. you can
immediately see (Figure DOS of the
perfect armchair nanoribbon (page
13)) that there are no states around
the Fermi-energy (-4.4 eV), i.e. the
investigated armchair nanoribbon is
non-metallic.

Band structure.Let’s have a quick
look at the band structure of the
armchair H-saturated ribbon. The
steps are the same as for the zigzag
case, SO just issue:

Figure 2.8: DOS of the perfect
armchair nanoribbon. You should
obtain a band structure like in Figure
The band structure of the perfect
hydrogen passivated armchair
nanoribbon. The Fermi energy is at -
4.4 eV (page 14). You can read off
the position of the band edges, when




you zoom into the energy region
around the gap: The valence band
edge and the conduction band edge
are in the Gamma point at -4.7 and -
4.2 eV, respectively. You can also
easily extract this information from
the band.out file, when you look
where to occupation goes from nearly
2.0 to nearly 0.0 in the first k-point
(the Gamma point).

2.3.2 Armchair  nanoribbon  with
vacancy Density and DOS

As next, we should investigate two
armchair nanoribbons with a vacancy
in each. The inputs can be found in
the subdirectories
elect/armchair/vacancyl_density and
elect/armchair/vacancy2_density and
you can visualize both with the
command ./showgeom v12.sh. As
you can see on Figures Armchair
nanoribbon with vacancy (structure 1)
(page 14) and Armchair nanoribbon
with vacancy (structure 2) (page 14),
the vacancy is in the two cases on
different  sublattices. The two
vacancies (structures 1 and 2) are
located on different sublattices. Since
the geometries are periodic along the
z-direction, the defects are also
repeated. As we would like to
calculate a single vacancy, we have to
make our unit cell for the defect
calculation large enough to avoid
significant defect-defect interactions.
In this case, the defective cells
contain twelve unit cells.In order to
calculate the electron density of both
vacancies, issue:

This will take slightly longer than the
previous calculations, since each
system contains more than four
hundred atoms. Figure 2.9: The band
structure of the perfect hydrogen




passivated armchair nanoribbon. The
Fermi energy is at -4.4 eV. Figure
2.10:  Armchair nanoribbon with
vacancy (structure 1). Figure 2.11:
Armchair nanoribbon with vacancy
(structure 2). We want to analyse the
density of states of the two different
vacancies, together with that of the
defect-free system. The commands
necessary to extract the DOS of all
three configurations and show them
in one figure have been stored in the
script showdos_perf v12.sh. Execute
it to obtain a figure like Figure The
DOS of the perfect nanoribbon is
indicated by solid blue line, the DOS
of the nanoribbons with vacancies
with green and red lines, respectively.

(page 15).

Figure 2.12: The DOS of the perfect
nanoribbon is indicated by solid blue
line, the DOS of the nanoribbons with
vacancies with green and red lines,
respectively. As you can see, in
contrast to the zigzag nanoribbon, the
perfect armchair nanoribbon s
insulating as it has no states around
the Fermi-energy (-4.45 eV). The
structures with vacancies, on the
other hand, introduce dangling
(unsaturated) bonds, leading to
unoccupied states around the Fermi-
energy. We can also see, that the
defects affect the band edges, which
are shifted with respect to their
position in the perfect structure. It
also seems that the valence band edge
IS more affected than the conduction
band edge, and in the case of vacancy
2 (red line) the effect is significantly
larger than for vacancy 1 (green line).




Vacancy formation energy: You
should also be able to calculate the
formation energies of the two
vacancies. The formation energy
£form of the vacancy in our case can
be calculated as Eform =(Evac + EC)
-12 x Eperf where £7ac is the total
energy of the nanoribbon with the
vacancy present, EC is the energy of
a C-atom in its standard phase and
Eperf is the energy of the perfect
nanoribbon. Since the defective
nanoribbons contain 12 unit cell of
the perfect one, the energy of the
perfect ribbon unit cell has to be
multiplied by twelve. As a standard
phase of carbon, we will take perfect
graphene for simplicity. The energy
of the c-atom in its standard phase is
then obtained by dividing the total
energy of the perfect graphene
primitive unit cell by two. (Look up
this energy from detailed.out in the
directory elect/graphene/density.) By
calculating the appropriate quantities
you should obtain ~8.5 eV for the
formation energy of both vacancies.
This is quite a high value, but you
should recall that the vacancies have
not been structurally optimised, and
their formation energies are therefore,
significantly higher than for the
relaxed configurations.

Defect levels: Finally we should
identify the localised defect levels for
vacancy 2 and plot the corresponding
one-electron wave- functions. The
vacancy was created by removing one
C-atom, which had three first
neighbors. Therefore, three sp2 type




dangling bonds remain in the lattice,
which will then form some linear
combinations to produce three defect
levels, which may or may not be in
the band gap. The DOS you have
plotted before, indicates there are
indeed defect levels in the gap, but
due to the smearing it is hard to say
how many they are. We want to
investigate the defect levels at the
Gamma point, as this is where the
perfect nanoribbon has its band
edges. We will therefore do a quick
Gamma-point only calculation for
vacancy structure 2 using the density
we obtained before. We will set up
the input to write out also the
eigenvectors (and some additional
information) so that we can plot the
defect levels with waveplot later. This
needs the following additional
settings in dftb_in.hsd:

To just run the calculation ./run.sh
and open the band.out file. You will
see, that you have three levels (levels
742, 743 and 744 at energies of -4.51,
-4.45 and -4.45 eV, respectively)
which are between the energies of the
band edge states of the perfect ribbon.
We will visualize those three levels
by using the waveplot tool. Waveplot
reads the eigenvectors produced by
DFTB+ and plots real space wave
functions and densities. The input file
waveplot_in.hsd can be used to
control which levels and which
region waveplot should visualize, and
on what kind of grid. In the current
example, we will project the real part




of the wave functions for the levels
742, 743 and 744. In order to run
Waveplot, enter: waveplot | tee
output.waveplot

The calculation could again take a
few minutes. At the end, you should
see three files with the .cube prefix,
containing the volumetric information
for the three selected one-electron
wavefunctions. We will use Jmol to
visualize the various wave function
components.  Unfortunately,  the
visualization of iso-surfaces in Jmol
needs some scripting. You can find
the necessary commands in the files
show™*.js. You can either type in these
commands in the Jmol console
(which should be opened via the
menu File | Console...) or pass it to
Jmol using the -s option at start-up.
For the case latter you will find
prepared command to visualize the
various orbitals in the files. Looking
at the defect levels, you can see that
the defect level lowest in energy
(742) has a significant contribution
on the atoms around the defect, but
also a non-negligible delocalized part
smeared over almost all atoms in the
system. Apparently a localized defect
level has hybridized with the
delocalized valence band edge state,
resulting in a mixture between
localized and non-localized state. The
other two defect levels, on the other
hand, have wavefunctions which are
well localized on the atoms around
the wvacancy site. Note that in
accordance with the overall symmetry
of the system, the defect levels are
either symmetric or antisymmetric
with respect to the mirror plane in the
middle of the ribbon. Figure 2.13:
Wave function of the lowest defect




level of the hydrogen saturated
armchair nanoribbon with a vacancy.
Blue and red surfaces show indicate
isosurfaces at +0.02 and -0.02 atomic
units, respectively.Figure 2.14: Wave
function of the second lowest defect
level of the hydrogen saturated
armchair nanoribbon with a vacancy.
Blue and red surfaces show indicate
isosurfaces at +0.02 and -0.02 atomic
units, respectively.

Figure 2.15: Wave function of the
highest defect level of the hydrogen
saturated armchair nanoribbon with a
vacancy. Blue and red surfaces show
indicate isosurfaces at +0.02 and -
0.02 atomic units, respectively.

Electron transport calculations in
armchair nanoribbons: In this sections
of the tutorial we will learn how to set
up self consistent and non self
consistent simulations with open
boundary conditions by using the
mpi/negf version of dftb+. We will
then calculate the density of states
and transmission coefficients and
then analyse the results in comparison
with the previous periodic
calculations. If you have not done so
yet, please download the file
tutorial_cecamhp.zip and decompress
it by Issuing:N unzip
tutorial_cecamhp.zip in your HOME
directory. Then enter the directory
transport/. All directories given in this
part of the tutorial are sub-directories
of the transport/ directory.

3.1Non-SCC Pristine armchair
nanoribbon.  3.1.1Preparing  the




structure: When we run a transport
calculation with open boundary
conditions, the geometric structure
specified in the input needs to obey
some rules. The system must consist
of an extended device (or molecule)
region, and two or more semi-infinite
bulk contacts. The bulk contacts are
described by providing two principal
layers for each contact. A Principal
Layer (PL) is defined as a contiguous
group of atoms that have finite
interaction only with atoms belonging
to adjacent PLs. In a sense, a PL is a
generalisation of the idea of nearest
neighbour atoms to the idea of nearest
neighbour blocks. The PL
partitioning in the electrodes is used
by the code to retrieve a description
of the bulk system. PLs may be
defined, as we will see, in the
extended device region to take
advantage of the iterative Green's
function solver algorithm. Additional
information about the definition of
PLs, contacts and extended device
region can be found in the manual
and in the on-line recipes. In the case
of an ideal one-dimensional system,
all the PLs are identical. The system
we start with is an infinite armchair
graphene nanoribbon (AGR),
therefore the partitioning into device
and contact regions is somewhat
arbitrary. We will therefore start from
a structure file containing a single PL
(2cell_7.gen), which has been
previously relaxed. The PL can be
converted to XYZ format by using
the gen2xyz script and visualised
with Jmol. The structure is shown in
Figure Armchair nanoribbon
principal layer (PL) (page 20). As
you may notice, we did not take a




single unit cell length as a PL, but
rather two unit cells. This choice is
dictated by the definition of the PL
itself, as we want to avoid non-zero
interactions between second-
neighbour PLs. This is Dbetter
explained by referring to Figure
Layer definition (page 20). The red
carbon atoms represent the closest
atoms which would belong to non-
nearest neighbour PLs, and these
have a separation of 0.568 nm, as
shown in Figure Layer definition
(page 20). The carbon-carbon
interaction is non zero up to a
distance of 6 a.u., therefore the
interaction between the two red atoms
would be small, but non zero. Hence
this is too small a separation for a one
unit cell long section of nanoribbon to
be used as the PL.

Figure 3.1: Armchair nanoribbon
principal layer (PL)

Figure 3.2: Layer definition. As
currently there is no way to damp out
small interactions, the PL must
contain two unit cells in this case, as
shown in figure Layer definition
(page 20). It follows that the correct
definition of a PL depends both on
the geometry of the system and the
interaction cut-off distance. After
having defined a proper PL, we then
build a structure consisting of a
device region with 2 PLs and contacts
at each end of this region, each with 2
PLs. Note: For the pristine system,
the equilibrium results should not
depend on the length of the device
region, as the represented system is
an infinite ideal nanoribbon with
discrete translational symmetry along
the ribbon. The input atomic structure
must be defined according to a




specific ordering: the device atoms
come first, then each contact is
specified, starting with the PL closer
to the device region. For an ideal
system defined by repetition of
identical PLs, the tool buildwire
(distributed with the code) can be
used to build a 1D geometry with the
right ordering. When you type:
buildwire 2cell 7.gen you will be
asked to type the name of the file
containing the input supercell
(2cell_7.gen) and the number of
principal layers in the device region
(we will set this to be 2). buildwire
will always give its output as a
supercell structure, but in some cases
we will need to manually modify this
structure file so that it corresponds to
the ordering explained in the previous
paragraph. The following output will
be visualised:

The indexes iatc and PLs define the
atoms belonging to the contacts, to
the device region and to the PLs of
the device region, and will be useful
when we will write the input files.
You should take a note of them (the
iterative algorithm used in solving the
Green’s function requires these
values). A file Ordered 2cell _7.gen
will have been created, and defined as
a supercell format GEN file (S),
which I will rename device_7.gen for
the following. We can better
understand the ordering of the atomic
indexes if we convert this structure to
XYZ, open it with jmol and then
change the colours of specific ranges
of atoms by using the following
syntax in the jmol console (for
example, we select here the first
contact and split it into two sub-




ranges containing its first and second
PLs):

Check xong

In Figure The PLs of contact 1 (page
22) a Jmol export of the structure is
shown.The yellow and red atoms
represent the first and second PLs of
the first contact. When you build a
structure yourself, it is always a good
idea to use a visualiser and verify that
the atomic indices are consistent with
the transport setup definitions.The
last step is to change the supercell
definition in the gen structure file.
From the point of view of an open
boundary  condition  calculation,
Supercell (S) and cluster (C) have a
slightly  different meaning with
respect to a canonical dftb
calculation. By Supercell we mean
any structure which is periodic in any
direction transverse to the transport
direction, while for cluster we mean
any structure not periodic in any
direction transverse to transport. It
follows that purely 1D systems, like
nanowires and nanoribbons, should
be regarded as clusters (C). Therefore
we edit the  structure file
device_7.gen, changing in the first
line the S (supercell) to be C (cluster)
and remove the last four lines, which
would normally only be defined for
periodic systems.This is the file we
get after running buildwire:

Note that the numbering of atoms at
the start of each line, as output by
buildwire are sequential according to
the numbering of the initial structure,
not its global position in the output




file.The corrected definition for the
1D ribbon with open boundary
conditions is then:

Now the file device _7.gen contains
the correct structure, defined as a
cluster and with the proper atom
ordering. Next, we set up the input
file for a tunnelling calculation.

3.1.2 Transmission and density of
states

In the DFTB+ input format, settings
related to a transport calculation may
be required to appear in separate
sections of the dftb _in.hsd file,
depending on the functionality they
invoke. In the following we will set
up the simplest open boundary
condition calculation: a calculation of
transmission coefficients according to
the Landauer-caroli formula,
assuming a non-Scc DFTB
hamiltonian. We will analyse and
comment the different sections
contained in the file dftb_in.hsd.
First, we have the specification of the
geometry:This follows the same rule
as in a regular DFTB+ calculation,
except for the fact that the structure
should follow the specific partitioning
structure explained in the previous
section. Whenever an open boundary
system is defined, we have to specify
a block named Transport which
contains information on the system
partitioning and additional
information about the contacts to the
device:

Here we have used the indexes
printed by buildwire. Device contains
two fields: AtomRange specifies
which atoms belong to the extended
device region (1 to 136) and




FirstLayerAtoms specify the starting
index of the PLs in the device region.
This field is optional, but if not
specified the iterative algorithm will
not be applied and the calculation will
be slower, even though the result will
be still correct. Then we have the
definitions of the contacts. In this
example we define a two terminal
system, but in general N contacts are
allowed. A contact is defined by an Id
(mandatory), the range of atoms
belonging to the contact specified in
AtomRange (mandatory) and a
FermiLevel (mandatory). The
potential is set by default to 0.0,
therefore need not be specified in this
example. Note that according to
equilibrium Green’s function theory,
the Fermi level and the contact
potential are not necessary to
calculate the Transmission curve, but
are required to calculate the current
via the Landauer formula, as they
would determine the occupation
distribution in the contacts.Then we
have the Hamiltonian block, which
describes how the initial Hamiltonian
and the Scc component, if any, will
be calculated:

In this example we will calculate the
transmission according to caroli
(referred by some authors as Fisher
Lee) formula in a non-SCC
approximation, i.e. the Hamiltonian is
directly assembled from the Slater-
Koster files and used as is to build the
contact self energies and the extended
device Green’s function. The
definition of an eigensolver is not
meaningful in an open boundary
setup, as the system is instead solved
by the Green’s function technique.




Therefore we just use a keyword
TransportOnly to indicate that we do
not want to solve an Eigenvalue
problem. The other fields are filled up
in the same way as for a regular
DFTB calculation. In general, in
DFTB+ an Eigensolver is regarded as
a calculator which can provide charge
density in the SCC cycle, therefore
we will define a Green’s function
based eigensolver later, but only for
Scc calculations. Note that as C-H
bonds are present in the system,
charge transfer should occur, hence
the result will not be accurate at the
non-SCC level. It is not a-priori
trivial to predict whether this affects
qualitatively or quantitatively the
transmission. We will therefore later
compare these results with an SCC
calculation - at the moment we will
stay at the level of a non-SCC
calculation, because it is faster to
execute and also allows us to use the
simplest input file possible. Finally,
the implementation of the Landauer-
Caroli formula is regarded as a post-
processing operation and specified by
the block TunnelingAndDos inside
Analysis:

TunnelingAndDos allows for the
calculation of Transmission
coefficient, Local Density of States
(LDOS) and current. A transmission
is always calculated using the energy
interval and energy step specified
here. The LDOS is only calculated
when sub-blocks Region are defined.
Region can be used to select some




specific subsets of atoms or orbitals,
according to the syntax explained in
the manual. In this example, we are
specifying the whole extended device
region (atoms 1 to 136). Note that the
energy range of interest is not known
a priori. Either you have a reference
band structure calculation, therefore
you know where the first sub-bands
are (this is the correct way to do this),
or you can run a quick calculation
with a large energy step and on the
basis of the transmission curve then
refine the range of interest.Now that
the input file is complete, we have to
complete one last step. During a
transport run, DFTB+ will look for
two directories named GS and
contacts. We have to create these
directories in advance:...We can then
start  the calculation: dftb+
dftb_in.hsd | tee output.log. We can
take advantage of parallelisation over
the energy points in the calculation by
running the code with mpirun:
mpirun -n 4 dftb+ dftb_in.hsd | tee
output.log. where 4 should be
substituted by the number of
available nodes.

| SF llelised
energy—peints; therefore a number of
nodes larger than the energy grid will
not improve performances and
secondly that the memory
consumption is proportional to the
number of nodes used - this may be
critical in shared memory systems
with a small amount of memory per
node. When the calculation has
finished, the transmission and density




of states are saved to both the
detailed.out file and to two separate
tunneling.dat and localDOS.dat files.
These additional files both contain
the energy points in the first column
and the desired quantities as
additional columns.We can plot the
transmission by using the plotxy
script: plotxy —xlabel 'Energy [eV]'
—ylabel ‘Transmission' -L
tunneling.dat. The plot is shown in
Figure Non-SCC transmission
through a pristine AGR (page
25):Figure 3.4: Non-SCC
transmission through a pristine AGR.
The ribbon is semiconducting,
therefore we can see a zero
transmission at energies
corresponding to the band gap. As the
system is ideal, outside of the band
gap we can observe the characteristic
conductance steps where the value of
the transmission is 1.0 for every band
which crosses a given energy. This is
a normal signature of ideal 1D
systems with translational invariance.
Similarly, we can visualise the
density of states by typing (the x and
y axis limits are chosen to focus on
the first few sub-bands):

The result is shown in Figure Non-
SCC density of states for a pristine
AGR (page 26):You can plot the
transmission or the density of states
on a semi-logarithmic scale:

If you do so, you will obtain the plot
shown in Figure Non-SCC density of
states on logarithmic scale (page
26).The density of states in the band-
gap is not zero, but decreases by
several orders of magnitude. This is a
natural consequence of the quasi-




particle nature of the Green's function
formalism: every state in the system
has a finite broadening in energy.
Figure 3.5: Non-SCC density of states
for a pristine AGR. Figure 3.6: Non-
SCC density of states on logarithmic
scale.

3.2 Non-SCC armchair nanoribbon
with vacancy (A).

3.2.1 Transmission and Density of
States: Now that we have a
calculation of the reference pristine
system, we will introduce a scattering
centre by producing a vacancy in the
system. In order to do so, we directly
modify the structure file device_7.gen
and the input file dftb_in.hsd. We
remove atom number 48 from the
structure file. Note that DFTB+
ignores the indexes in the first
column of the .gen file, therefore we
do not need to adjust them. We have,
however, to remember to change the
total number of atoms in the first line
from 408 to 407:The resulting
structure should look like this:

We then also adjust the dftb_in.hsd
file accordingly. As we have removed
an atom, all the indexes in the
transport block need to be adjusted
properly. Note that we removed an
atom in the first PL of the extended
device, therefore we also need to
adjust the values of FirstLayerAtoms.
The Transport block now reads:

Compared to the pristine system, we
have modified AtomRange in all the
blocks and the values of
FirstLayerAtoms. After running the




calculation, we can compare the
transmission curve for this structure
with a single vacancy and the pristine
ribbon by using plotxy:

Energy [eV].Figure 3.8: Non-SCC
Transmission in pristine (green) and
single vacancy (blue) ribbons.
Clearly, the presence of a vacancy
introduces some finite scattering
which reduce the transmission with
respect to the ideal ribbon. In
particular, the effect is quite small in
the first conductance band while it is
more visible in the first valence band
and in higher bands. The reflection
amplitude is increased near the band
edges. This is expected in 1D
systems, as near the band edges the
density of states diverges (Van Hove
singularities), hence the group
velocity is lower, and it is known
from semi-classical transport theory
that the scattering probability is,
when short range disorder is present,
inversely proportional to the group
velocity. The absence of resonant
features in the transmission may point
to the fact that the vacancy does not
induce additional states in the
conduction or valence bands. This
can be verified by visualising the
density of states, as in Figure Non-
SCC DOS for single vacancy in
sublattice A (linear scale) (page
29).The same density of states can be
visualised on logarithmic scale as
well, as in Figure Non-SCC DQOS for
single vacancy on sublattice A
(semilog scale) (page 29). The
vacancy is adding some close energy
levels in the gap, as verified already
from the DFTB calculation in the first




part of the tutorial. The Van Hove
singularities are partially suppressed
as the system no longer possesses
translational symmetry along the
transport direction. Even in a simple
non-SCC approximation, the
qualitative picture is consistent with
the previous  SCC periodic
calculation. We will now consider a
vacancy sitting on the other sublattice
(B) and try to understand whether the
relative position of the vacancy is
relevant or not by calculating once
more the non-SCC transmission and
density of states. Figure 3.9: Non-
SCC DOS for single vacancy in
sublattice A (linear scale). Figure
3.10: Non-SCC DOS for single
vacancy on sublattice A (semilog
scale)

3.3 Non-SCC armchair nanoribbon
with vacancy (B).

3.3.1 Transmission and Density of
States: We will now consider a
vacancy sitting on the other sublattice
(B), i.e. we can take the structure file
we used for the ideal ribbon and
delete the atom number 47. The
structure file is:..... Figure 3.11:
Geometry with vacancy on sublattice
B. Also in this case we remove an
atom from the first PL of the
extended device region, therefore the
rest of the dftbjn.hsd input file is
identical to the one we used for the
vacancy on sublattice A. We can
therefore just copy it and run the dftb
calculation. The transmission is
shown in Figure Non-SCC




Transmission for vacancy B (blue),
pristine (green) and vacancy A
(green) (page 31) (Transmission for
vacancy on sublattice B in blue,
transmission  for  vacancy on
sublattice A in green and pristine
system in green):

We can see a very strong suppression
of transmission in the first sub-bands,
especially in the first valence band.
Again, the absence of resonances may
be due by gap states. In fact, we can
verify it by plotting the density of
states, as shown in Figure Non-SCC
DOS for vacancy in sublattice B
(page 31). We can clearly see that the
vacancy induces some nearly
degenerate gap states, and that the
density of states at higher energies is
largely unaffected. It is known that
the relative position of a scattering
centre in a graphene nanoribbon with
respect to different sub-Ilattices
strongly affects its  scattering
properties, as is shown in these non-
SCC calculation. Qualitatively, the
picture is also consistent with
periodic DFTB calculations, with the
difference that we obtain directly
information on the effect on transport
properties via transmission function.
This also ensures that we do not have
to worry about choosing the right
supercell or k-point sampling as the
open boundary conditions represent
exactly the infinite system with a
single scattering centre. As already
pointed out earlier, there is no




warranty that a non-SCC calculation
give the proper result in a system if
relevant charge transfer is occurring,
and in general it will not. Therefore in
the next section we will repeat the
same calculation by solving the SCC
problem. Energy [eV]: Figure 3.12:
Non-SCC Transmission for vacancy
B (blue), pristine (green) and vacancy
A (green). Figure 3.13: Non-SCC
DOS for vacancy in sublattice B

3.4 SCC Pristine armchair
nanoribbon: A DFTB Hamiltonian is
in general given by two terms:

Where the component Hshhis the
self-consistent (SCC) correction. The
SCC correction is in general needed
whenever there is a finite charge
transfer between atoms, i.e. whenever
there are bonds between atoms with
different chemical species or with
different coordination numbers. In
our case, we can expect a finite
charge transfer between the C and H
atoms at the edges, and an SCC
component may be relevant. While in
the previous sections, we have only
considered the non-SCC component
HO, in the next sections we will
compute the same calculation by
including the correction given by the
shifts  Hshifts. Note that the
equilibrium SCC problem can be
tackled in two ways: we could apply
the Landauer-Caroli to an SCC
Hamiltonian taken, for example, from




a periodic calculation (i.e. uploading
the SCC component), or we can solve
the problem as a full NEGF setup
with O bias. The code flow is
currently such that this second
procedure has to be used (however,
the first technigue will be available in
future release). Therefore we will
need to learn to set the input related
to two other components of the
NEGF machinery: the real space
Poisson solver and the Green’s
function density matrix.In this way
we will introduce a first complete
input file. It is important, from a
didactic point of view, to be clear that
as long as the applied bias is zero and
we are interested in equilibrium
properties, the two approaches are
equivalent and the results are only
valid in the limit of linear response.

3.4.1 Contact calculation: In order to
run an SCC transport calculation, the
code needs some  additional
knowledge about the contact PLs. In
particular, the SCC shifts and
Mulliken charges have to be saved
somewhere to enable consistency
between the calculation of the self-
energy and the calculation of the
Poisson potential. To this end, we
have to introduce an additional step in
the procedure: the contact calculation.
The contact calculation is simply a
DFTB periodic calculation for the
contact PL. As such, not all the field
defined in the transport are
meaningful and the input file will of
course look different. The Geometry
block is identical:




While the Transport block needs to be
modified as follows:

We first notice the addition of an
option Task
=ContactHamiltonian{...}, which was
previously  absent.  This  block
specifies that we intend to calculate
the bulk contact SCC properties, and
the field Contactld specifies which
contact we want to calculate. The
field FirstLayerAtoms in the Device
block is absent (it does not make
sense in a contact calculation) and so
are the fields FermiLevel and
Potential in the two Contact sections,
as they are not meaningful during this
step. In general, the philosophy of a
DFTB input file is that if input fields
that would be useless or contradictory
are present, the code will halt with an
error message. The Hamiltonian
block shows some differences, too:

The flags SCC=Yes and
SCCTolerance=1e-6 enable the SCC
calculation. A small tolerance in the
contact calcu-lation, and in general in
transport calculation, helps to avoid
artificial mismatches at
device/contact  boundaries.  The
parameter EwaldParameter needs to
sometimes be set when using parallel
calculations to reduce the size of the
neighbour list. Typically, the code
may complain about a too small
parameter: in that case, setting a value
of 0.1 is considered to be good
practice. The other parameters are the
usual ones, except for the
KPointsAndWeight, which deserves
special attention. The bulk contact is
of course a periodic structure, hence




we need to specify a proper k-point
sampling, as we would do in a regular
periodic DFTB calculation. However,
you should be careful about the way
the lattice vector is internally defined.
In the input system is a cluster (C),
I.e. it has no periodicity in direction
transverse to the transport directions,
the lattice vector of the contact is
internally reconstructed and assigned
to be the first lattice vector, regardless
the spatial orientation of the structure.
This means that the
KPointsAndWeights for a cluster
system are always defined as above: a
finite number of k-points along the
first reciprocal vector (according to a
1D Monkhorst-Pack scheme) and a
Gamma point sampling along the
other two directions. The reason for
this choice is that we do not want to
assign a specific direction to the
structures, i.e. at this level we do not
assume in any way that the structure
must be oriented along x,y or z
direction. Note also that as the
contact information is used in the
transport calculation, it is a good idea
to use a dense k point sampling and a
low SCC tolerance, in order to get a
very well converged solution. The
contact calculation will be usually
much faster than the transport
calculation, so this does not usually
present a problem. On the other hand,
this rule regarding k-points does not
apply to periodic  transport
calculations, as the periodicity along
the transverse directions must also be
preserved (refer to the following
section for a periodic system
example). We can run the calculation
by typing: dftb+ dftb_in.hsd After
running the calculation, we notice




that a file shiftcont source.dat is
generated. This file contains the
infor-mation useful for the transport
calculation (shifts and charges of a
bulk contact). It is suggested you also
keep a copy of the detailed.out for
later reference. We can obtain the
value of the Fermi energy, which we
will later need, from detailed.out as -
4.7103 eV. We can now run the same
calculation for the drain contact by
just modifying the Task block:

The contact are identical, therefore
we expect the same results, also with
the same Fermi energy. We now have
a file shiftcont_drain.out, which is
equivalent to shiftcont_drain.dat apart
from small numerical error. In fact,
we could have simply copied the
previous contact results into this
file.Now that the contact calculation
Is available, we can set up the
transport calculation.

3.4.2 Transmission and Density of
States: In order to calculate the
transmission for the SCC system, we
have to copy the files
shiftcont_drain.dat and
shiftcont_source.dat into the current
directory: cp ../contacts/shiftcont™ .

Then, we have to specify some
additional blocks with respect to a
non-SCC calculation. We first look at
the Transport block.:

The atom indices are of course the
same, as the geometry of the system
Is not changed. This time though, we
explicitly specified a Task block




named UploadContacts, = which
declares that we are now running a
full transport calculation.
Task=UploadContacts{} is the
default and does not take any
additional parameters, therefore you
can safely omit it. Now that we are
solving the full SCC scheme, we will
allow for charge transfer between the
open leads and the extended device
region, therefore it is important to set
a well-defined Fermi energy. While
this does not make any difference in a
non-SCC transmission calculation, it
is crucial for the SCC calculation. A
wrong or unphysical Fermi energy
will lead to unphysical charge
accumulation or depletion in the
system. To this end, you will have to
pay some attention to the definition of
the Fermi energy. As we are
calculating a semiconductor system,
the Fermi level should be in the
energy gap. By calculating a band
structure or by inspection of the
eigenvalues in the file detailed.out
you can verify that the value -4.7103
is on the edge of the conduction band.
This can be explained as numerically
the Fermi level is defined by filling
the single particle states till the
reference density is reached, therefore
its position inside the gap of a
semiconductor is arbitrary. Therefore,
while in metallic system we may
ensure consistency and use a well
calculated Fermi level at some
specific temperature during all our
transport calculation, in the case of a
semiconductor system we can
manually set the Fermi level in the
middle of the energy gap (for this
system, roughly at -4.45 eV) and
freely vary the temperature as long as




the gap is larger than several times
the value of KT. We will see in the
following that there are some ways to
verify that the Fermi level is defined
consistently, as this is often source of
confusion. Note also that, differently
from other codes, dftb+ allows for
different Fermi levels in different
contacts, which can be useful when
heterogeneous contacts are defined
(for example, in a PN junction). In
that case a built-in potential is
internally added to ensure no current
flow at equilibrium. In  the
Hamiltonian block now an SCC
calculation has to be specified:

MaxAngularMomentum and
SlaterKosterFiles are not modified.
But differently from the non-SCC
calculation, we now need to specify a
way to solve the Hartree potential and
the charge density self-consistently.
In a NEGF calculation, we use a real-
space Poisson solver to calculate the
potential, and a Green’s function
integration method to calculate the
density matrix:

The Poisson section contains the
definition of the real space grid
parameters. Note that differently from
a normal  dftb+  calculation,
simulating regions of vacuum is not
for free, as the simulation domain
must be spanned by the real space
grid. The grid is always oriented
along the orthogonal cartesian
coordinate  system. Poissonbox
specifies the lateral length of the grid.
The length along the transport
direction is ignored as it is
automatically determined by the code




(in this case, z=30.0). The length
along the transverse direction are
relevant and should be carefully set.
In order not to force unphysical
boundary conditions, you may extend
the grid at least 1 nm away. If a
strong charge transfer is present, you
may go for a larger grid according to
your available computational
resources. A poorly defined grid can
lead to no convergence at all, to a
very strange (and slow) convergence
path or to unphysical results.
MinimalGrid specifies the minimum
step size for the multigrid algorithm.
Values between 0.2 and 0.5 are
usually good, where a lower value
stands  for  higher  precision.
SavePotential = Yes will return a file
containing the potential and charge
density profile, for later reference.
These files can be quite large,
therefore the default is No. The
Eigensolver is now specified as
GreensFunction. With this definition,
we instruct the code not to solve an
eigenvalue problem but rather to
calculate the density matrix by
integration of the Keldysh Green’s
function. This block provides the
SCC charge density with or without
applied bias. The options define the
integration path. Usually the default
options are good enough in most
cases and advanced users may refer to
the manual and references therein.
The Mixer options is present in dftb
calculations as well. Convergence is
known to Dbe critical in NEGF
schemes. In that case, a lower
MixingParameter value will help to
avoid strong oscillation in the SCC
iterations. The last block is Analysis

This block is identical to the non-scc




calculation as the same task is
performed: calculation of
Transmission, current and DOS by
using the Landauer-Caroli formula.
The Transmission will be of course
be different due to the fact that the
ground state charge density is now
solution of the SCC Hamiltonian and
we have slightly changed the energy
range as the SCC component
introduce a shift of the band-structure
(try to compare the SCC and non-
SCC transmission results when you
are done). We can now run the
calculation  (after defining the
directories GS and contacts):

Where -n 4 should be adapted to the
number of available nodes. As
transport calculations in dftb+ are
parallelised on energy points, a
quantity larger than 40 (the default
number of integration points at
equilibrium) will not speed up the
calculation of the density matrix. An
inspection of the file detailed.out
reveals that we have additional
information with respect to the non-
SCC calculation, including a list of
atomic charges and orbital
population, as now the SCC density
matrix has been calculated. The
transmission is also saved as separate
file, and is shown in Figure SCC
transmission in pristine AGR (page
36). Figure 3.14: SCC transmission in
pristine AGR. As
you’d expect, it still step-like as in the
non-SCC calculation. This is correct,
as we’re calculating an ideal 1D




system. The bandwidth (i.e., the steps
width) may differ due to SCC
contribution and  the  overall
transmission is shifted. Note that
while the non-SCC calculation is very
robust, meaning that you will always
get step-like transmission for a 1D
system, in the SCC calculation a poor
definition of the boundary conditions,
of the bulk contact properties or of
the additional GreensFunction and
Poisson blocks may induce numerical
artifacts and scattering barriers which
should not be there. As a result, the
transmission will not appear step-like
but rather visibly smoothed out. You
can also verify the quality of the
calculation by inspection of the
potential and charge density profiles.
In a pristine periodic system we
would expect a periodic potential,
without  discontinuities at  the
boundary between extended device
and electrodes. The information
needed to construct the real space
potential and charge density are
contained in 5 files: box3d.dat,
Xvector.dat, Yvector,dat, Zvector.dat,
potential.dat and charge_density.dat.
The first 4 files contain the grid
information, and the last two ones the
list of potential and charge density
values (following a row major order).
Those information can be converted
to any useful with some simple
scripting, we provide an utility called
makecube which can be used to
convert them to Gaussian cube format
or a more flexible vtk format. There’s
plenty of software to visualise vtk or
cube files, but unluckily at present
current choices of software which are
effective at visualising real space grid
data are weak at visualising atomistic




structures, and vice versa. In the
following we will use paraview and
work with the vtk format. Paraview is
freely available and is supplied with
many gnu/linux distributions as a
compiled package. The vtk file can be
obtained by simply running:

Figure 3.15: Potential profile along
the nanoribbon

An extensive explanation of paraview
features is beyond the scope of this
tutorial. Following some easy steps,
you can produce the potential map
shown in Figure Potential profile
along the nanoribbon (page 37).

1.0pen paraview and import the file
pot.vtk from File->Open

2.Click on Properties->Apply
(Properties are usually visualised on
the left side of the screen) and you
should see the bounding box in the
visualisation windows.

3.In the Pipeline browser select the
file pot.vtk by clicking once on it, and
then select the Clip filter from Filters-
>Alphabetical (or from the filter
toolbar).

4.In Properties, click on ‘Y Normal’
to produce a clip along the
nanoribbon.

The plot shown in Figure Potential
profile along the nanoribbon (page
37) above is the self-consistent
potential along the nanoribbon. We




can see that the charge transfer
between carbon and hydrogen at the
edges results in a non-flat potential.
At a first glance, the potential looks
quite  homogeneous, meaning that
there are no clear discontinuities at
the box boundary. This is important:
being it a homogeneous ribbon, the
potential should have the same
periodicity as the lattice. We can
verify this with a closer inspection by
plotting a cut along a line. We apply
the following steps:

1.We select pot.vtk in the Pipeline
Browser and Filters->Alphabetical-
>Plot Over Line

2. From the Properties window, we
select ‘Z Axis’ and click on ‘Apply’
By following this procedure we
obtain Figure Potential profile along
the nanoribbon (page 38).

Figure 3.16: Potential profile along
the nanoribbon. As you can notice,
there is a discontinuity at the
interface. However, it is quite small
(~ 12 meV). Defining a ‘perfect’
interface Dbetween the bulk semi-
infinite contacts and the device region
Is very difficult, especially in a
semiconductor where no free charge
can contribute to screen such an
interface  potential. A smaller
tolerance in the self-consistent charge
during the contact and the device
calculation, a finer calculation of the
Fermi level (in metallic systems) and
a finer Poisson grid can decrease the
discontinuity: you should be able to
reach about 1 meV, but it is difficult
to go below this value. However, as




you can see in the transmission plot,
as long as the discontinuity is this
small, it hardly affects the
transmission.  However, it is
important for you to verify that the
behaviour at the boundaries is
reasonable. Otherwise, the extended
region may be too small to allow to
the relevant physical quantities
(charge, potential) to relax to bulk
values. Be aware that numerical
errors are unavoidable, therefore it is
important to  understand  their
relevance and the impact on the
results. In  the  transmission
calculation we do not notice anything
different because the energy step is
close to the mismatch at the
boundaries.  After running the
calculation for the pristine system, we
will introduce vacancies as we did in
the non-SCC calculation. The results
should be now directly comparable to
the bulk periodic SCC dftb
calculation.

3.5 SCC armchair nanoribbon with
vacancy (A):

We will now calculate the SCC
transmission for the nanoribbon with
a vacancy on the sublattice A, using
the same input structure set up for the
non-SCC calculation. The contacts
are identical to the pristine case,
therefore in the following we will
only modify the extended device
calculation.

3.5.1 Transmission and Density of
States: As previously done, the
transport section must be modified in
order to account for the different
number of atoms in the extended




device region:

We use the same Fermi level and the
files shiftcont_source.dat and
shiftcont_drain.dat as in the pristine
system calculation, as the contacts are
not modified. The Hamiltonian block
Is also not modified, except for an
additional finite temperature:

A finite temperature is used to
provide a finite  temperature
broadening, useful if the wvacancy
induces partially filled gap states. In
general, temperature broadening may
improve convergence and dump
oscillations in the SCC iterations. The
Analysis block is also similar, we add
the DOS calculation to verify if we
can identify a vacancy state:

Figure 3.17: Density of states for
vacancy (A). The vacancy states are
located in the energy gap,
consistently  with  the  periodic
calculation, and that the tunneling
curve is qualitative similar to the non-
scc calculation. The first conduction
and valence band are weakly affected
by the vacancy which does not act as
a strong scatterer. There is no
signature of resonances, as the
additional levels are located in the
gap.Note also that we previously
recommended the wuse of large
extended regions and to verify that
the potential and charge density are
smooth at interfaces. As you can see
in Figure Potential profile for
vacancy (A) (page 41), the impurity
iIs very close to the boundaries,
resulting to a potential profile which
varies significantly close in to the
boundary. It is left to the reader to




verify that the overall transmission
does not change significantly if a
longer extended region is considered.

3.6 SCC armchair nanoribbon with
vacancy (B): We will now run the
same calculation, but with the
vacancy on the sublattice B. As in the
non-SCC case, the only difference
with the previous calculation is the
location of the vacancy, therefore the
input file is absolutely identi-cal. The
contacts are the same, therefore all we
have to do is copy the
shiftcont_source.dat and
shiftcont_drain.dat files into the
current directory and run the
calculation. The resulting
transmission and density of states are
shown in Figures Density of states for
vacancy (B) (page 42) and
Transmission for vacancy (B) (page
42). We immediately notice that the
Van Hove singularities are strongly
suppressed and that the valence band
is almost completely suppressed.
Consistently with the picture obtained
by periodic calculation, a quasi-
bounded vacancy level hybridise with
the valence band edge causing a
strong back-scattering. A comparison
between all the three cases (see
Figure Transmission for pristine
system (blue), vacancy (A) (green)
and vacancy (B) (red) (page 43))
shows that the scattering probability
iIs deeply affected by the exact
position of the vacancy. Figure 3.18:
Transmission for vacancy (A), Figure
3.19: Potential profile for vacancy
(A), Figure 3.20: Density of states for
vacancy (B), Figure 3.21:
Transmission for vacancy (B) .This




Is, in graphene nanoribbon, generally
true for other kinds of short range
scattering centres such as
substitutional impurities. We can also
notice that, in this particular case, the
non-scc approximation IS
qualitatively  consistent for two
reasons: the vacancy level are not
populated and the charge transfer at
the edges is not critical as the edges
contribute poorly to the transmission
in an armchair ribbon. Figure 3.22:
Transmission for pristine system
(blue), wvacancy (A) (green) and
vacancy (B) (red).

CHAPTER 4: This tutorial is licensed
under the Creative Common
Attribution 4.0 International
license.You are free to: Share - copy
and redistribute the material in any
medium or format. Adapt - remix,
transform, and build upon the
material for any purpose, even
commercially. The licensor cannot
revoke these freedoms as long as you
follow the license terms. Under the
following terms: Attribution You
must give appropriate credit, provide
a link to the license, and indicate if
changes were made. You may do so
in any reasonable manner, but not in
any way that suggests the licensor
endorses you or your use. No
additional restrictions - You may not
apply legal terms or technological
measures that legally restrict others
from doing anything the license
permits.







