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We propose a model of a nonlinear
double-well potential NDWP, alias a

double-well pseudopotential, with the
objective to study an alternative
implementation of the spontaneous

symmetry breaking SSBin BoseEinstein
condensates BECsand optical media,
under the action of a potential with two
symmetric minima. In the limit case
when the NDWP structure is induced by
the local nonlinearity coefficient

Chuing toi dé xuat md hinh NDWP giéng
thé kép phi tuyén, hay con goi la gia thé
giéng kép nham tim kiém mot phuong
phap khac dé thyc thi pha v& d6i xang tu
phat SSB trong trang thai ngung tu
BoseEinstein BEC va moi truong quang
hoc, duéi tac dong cua thé co hai cuc tiéu
dbi xtmg. Trong trudng hop gigi han khi
cau tric NDWP duoc hinh thanh duéi tac
dong cua hé sé phi tuyén cuc bo duogc
biéu din qua tap hop hai ham delta,
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represented by a set of two delta
functions, a fully analytical solution is
obtained for symmetric, antisymmetric,
and asymmetric states. In this solvable
model, the SSB bifurcation has a fully
subcritical character. Numerical analysis,
based on bothdirect simulations and
computation of stability eigenvalues,
demonstrates that, while the symmetric
states are stable up to the SSB
bifurcation point, both symmetric and
emerging asymmetric states, as well as
all antisymmetric ones, are unstable in
the model with the delta functions. In the
general model with a finite width of the
nonlinear-potential wells, the
asymmetric states quickly become stable,
simultaneously with the switch of the
SSB bifurcation from the subcritical to
supercritical type. Antisymmetric
solutions may also get stabilized in the
NDWP structure of the general type,
which gives rise to a bistability between
them and asymmetric states. The
symmetric states require a finite norm
for their existence, an explanation to
which is given. A full diagram for the
existence and stability of the trapped
states in the model 1is produced.
Experimental observationof the predicted
effects should be possible in BEC
formed by several hundred atoms.

Introduce 10 h 46 phut

The one-dimensional 1DSchrédinger
equation including a symmetric potential
structure produces single-particle wave
functions of a definite parity, even or
odd, with theground state always
corresponding to an even function
without zeros. However, a spatially
symmetric Hamiltonian of an interacting
many-particle system can give rise to
asymmetricstates, which may be

ching ta sé& thu dugc mot nghiém hoan
toan giai tich ddi vaoi cac trang thai ddi
xang, phan ddi xang va bat d6i xung.
Trong md hinh cd thé giai duoc nay, diém
ré nhanh SSB c6 dac trung hoan toan
chua t&i han. Phan tich sb dua trén ca mo
phong truc tiép va tinh toan céc tri riéng
6n dinh cho thiy, trong khi cac trang théi
dbi xtrng 6n dinh dén diém ré nhanh SSB,
trang thai ddi xung va khong dbi xang
méGi noi 1én cling nhu tat ca cac trang thai
phan d6i xung khéng 6n dinh trong mé
hinh ¢6 cac ham delta. Trong mé hinh
tong quat vai do rong giéng thé phi tuyén
httu han, cac trang thai bat doi xung
nhanh chéng tré nén 6n dinh, déng thoi
chuyén cac diém ré nhanh SSB tur loai
dudi té1 han sang siéu téi han. Cac
nghiém phan ddi xung ciing c6 thé on
dinh trong cdu trc NDWP loai téng
quat, 1am nay sinh hiéu tng ludng on
gira chung va cac trang thai phan doi
xung. C4c trang thai d6i xang can chuan
hitu han cho su ton tai cua ching va
chiing ta s& giai thich van dé nay. Ching
ta cling s€ xay dung gian d6 day du vé su
ton tai va tinh 6n dinh cua cac trang thai
bay trong md hinh. Quan sét thyc nghiém
cac hiéu tang du doan la kha thi trong
BEC duogc hinh thanh boi vai tram
nguyén tir.




considered as a spontaneous-
symmetrybreaking SSBeffect. At the
classical level, the SSB occurs in optics,
as a result of the interplay between the
nonlinearity and waveguiding structures,
when the strong nonlinearitypartly
suppresses the linear coupling between
parallel guiding cores. In particular, it
was shown that a stable trapped mode
may be asymmetric in a channel
waveguide embeddedin the self-focusing
Kerr medium 1. The onset of a
sharpsymmetry-breaking instability in a
double-hump  twocomponent  spatial
optical  soliton was demonstrated
experimentally in a planar nonlinear
waveguide 2.A natural setting in which
SSB phenomena may arise inthe context
of nonlinear optics and Bose-Einstein
condensation BECis provided by double-
well potentials DWPs. Inthe experiment,
an effective optical DWP was created by
aspecially designed illumination pattern
applied, in the ordinary polarization, to a
photorefractive  crystal the  SSB
wasobserved in a beam  with
extraordinary polarization, shone
through this structure 3. It was also
proposed to realizesimilar effective
potentials  in  coupled  nonlinear
microcavities 4, and in a structured core
of an optical fiber 5. Aspecific variety of
the optical SSB was studied in a model
oftwo parallel-coupled antiwaveguides
(6ng dan séng co6 do chénh léch chiét
suat giira 161 va vo am) with the self-
focusingnonlinearity, which corresponds
to an effective doublebarrier potential,
rather than DWP 6.Well-known dual-
core optical fibers 7, which may serve as
a basis for the power-controlled all-
optical switching, ifthe Kerr nonlinearity
Is taken into regard 8, may also
beconsidered as DWP structures, with




the difference that thetunneling between
two potential wells is replaced by the
linear coupling between the cores. In
addition to the SSB ofcontinuous-wave
states 9, the formation of
asymmetricsolitons in dual-core fibers
was studied in detail theoreticallyl0.
Similar analysis of the SSB for soliton
modes was performed in models of dual-
core fiber Bragg gratings with theKerr
nonlinearity 11, and coupled waveguides
with thequadratic 12and cubic-quintic
13nonlinear terms, including a system of
linearly coupled complex
GinzburgLandau equations of the cubic-
quintic type 14. In Refs.15-17, the
analysis of the SSB was extended to
three-corelinearly  coupled triangular
configurations—for optical fibers, Bragg
gratings, and complex Ginzburg-Landau
equations, respectively.The concept of
SSB also plays an important role in
understanding experimental phenomena
in BEC, because, if interactions between
atoms are strong enough, the ground
stateof the condensate may not follow
the symmetry of the trapping potential
18. In particular, manifestations of SSB
wereobserved in a quenched (bi dap tat,
lam lanh) ferromagnetic state of a spinor
three-componentcondensate 19. In the
single-componentBEC, a natural setting
for the realization of SSB may again be
provided by DWP configurations. An
effectively onedimensional DWP
structure was realized experimentally
inRef. 20. Loading a condensate of 87Rb
atoms with the repulsive interaction
between them into this structure made
itpossible  to  observe  Josephson
oscillations for a small number of atoms,
and the macroscopic quantum self-
trapping featuring an imbalance between
populations of the two wells, for a larger




number. Parallel to the experimental
work, numerous theoretical studies of
matter-wave DWP settings have been
performed for the cases of both repulsion
andattraction between atoms. These
studies addressed problemssuch as finite-
mode reductions 21 including
twocomponent mixtures 22 , obtaining
analytical results forspecific shapes of
the potential 23, quantum effects 24,and
some others. Recently investigated
tunneling betweenvortex and antivortex
states in BEC trapped in a
twodimensional 2Danisotropic potential
25belongs to thiscategory
too.Theoretical analysis was also
performed for 2D and 3D extensions of
the DWP settings in BEC, which add one
ortwo extra dimensions to the model,
either without an additional potential, or
with a periodic optical-lattice
OLpotential acting in these directions.
These settings may be approximated,
similar to the above-mentioned standard
model ofdual-core optical fibers, by a
system of linearly coupled 1D26or 2D
27equations. In a more accurate form,
nearlylD solitons can be found as
solutions to the full 2D equationthat
includes the DWP the potential depends
on the transverse coordinate x, allowing
solitons to self-trap in the
freelongitudinal direction y 28. The latter
model is relevant tothe case of the self-
attractive nonlinearity. In the case ofself-
repulsion, dual-core gap solitons have
been predicted in the setting with the OL
potential applied along direction y29.
Note that, in any setting, gap solitons
cannot realize theground state of the
respective system, but, nevertheless,
theyrepresent stable configurations that
have been created in theexperiment using
the condensate of 87Rb atoms with the




repulsion between them 30.

T Igel_lel_al pl_melple _uphe_lel byl_ the
optics and BEC alike, is that the SSB
occurs through bifurcations of symmetric
or antisymmetricstates, in the models
with the self-attraction and selfrepulsion,
respectively. As mentioned above,
models of theDWP or double-core type,
combining cubic attractive andquintic
repulsive nonlinearities, were studied
t0013,14,31,32. In the latter case, the
competition between theself-focusing
and self-defocusing against the backdrop
of theDWP structure gives rise to
specific SSB bifurcation diagrams, in the
form of nonconvex closed loops 13,32,
aswell as to specific dynamical switching
regimes 31.  Alsopredicted  were
manifestations of the SSB in a
twocomponent BEC mixture trapped in
the DWP structure 22,for both cases of
the self-attraction and self-repulsion.All
the extensive work on the SSB outlined
above wasperformed in settings based on
usual linear potentials of thedouble-well
type. The objective of the present work
Is topropose another physical framework,
in which the SSB canbe predicted in an

effective nonlinear double-well
potentiaINDWP, induced through a
spatial modulation of the

localnonlinearity coefficient. Following
the terminology commonly adopted in
the solid-state theory 33, this nonlinear

ingredient—ofthe—physical-model-may
also-be-a-called-apseudopotential.

In BEC settings, a pseudopotential
structure may bereadily induced through
spatial modulation of the local value of
the s-wave scattering length, asx, which
determines theeffective BEC




nonlinearity. The modulation can be
implemented, through the Feshbach
resonance, by means of a spatially
inhomogeneous dc magnetic field 34, or
by a resonant optical field, as predicted
in Ref. 35and
demonstratedexperimentally in Ref. 36.
It was also proposed to controlthe
Feshbach resonance by dint of dc electric
field 37,which can be easily made
inhomogeneous too. The attractiveand
repulsive interactions between atoms
correspond to asO and a sO, respectively;
both signs, as well as signchanging
patterns, can be wused to engineer
effective  nonlinear  potentials. So
designed pseudopotential lattices have
attracted muchinterest in studies of BEC.
In the 1D geometry, solitons,extended
wave patterns, and various dynamical
states supported by such structures were
studied theoretically 38,39a random
nonlinear lattice 40and pseudopotentials
generated by a spatially monotonous
ramp of the local scatteringlength
41were explored too. Recently, similar
states werealso considered in nonlinear
optics, assuming a periodicmodulation of
the local Kerr coefficient 42. Some but

much fewerresults were obtained too for
2D settings 43.However, to the best of
our knowledge, SSB phenomena in
nonlinear pseudopotentials have not been
studied yet. Inthis work, we focus on
such effects in NDWP settings,
whichcan be engineered by means of
techniques  mentioned  above,using
attractive interactions between atoms in
BEC, or theself-focusing nonlinearity in
optics, as briefly described below. In
Sec. Il, we formulate the model and give
estimates ofcharacteristic values of
related physical parameters. Section IlI
reports  full  analytical  solutions




corresponding to symmetric,
antisymmetric, and asymmetric states
trapped by theNDWP, in the limit case
when  the  modulation of the
localnonlinearity coefficient IS
represented by a set of two Diracdelta
functions. The relevance of the latter
model is stressed,in particular, by the
recently introduced 39BEC modelwith a
periodic nonlinear potential of the
Kronig-Penneytype, whose simplest
version reduces to a periodic array
ofdelta functions SSB effects were not
studied in Ref. 39 .In Sec. IV, we present
numerical results for the generalmodel,
in which the delta functions are replaced
by a pair of Gaussians of a finite width.
In that case, the trapped statesare found
in a numerical form, and their stability is
studied by means of direct simulations of
slightly perturbed stationary states and
also, independently, through the
computationof  respective  stability
eigenvalues for small perturbations.The
result is that asymmetric states, which
are unstable in thedelta-function limit,
can be readily stabilized in the
generalmodel. In addition, antisymmetric
states may be stabilizedalso, in two
disjoint regions of the parameter state,
givingrise to a bistability involving
antisymmetric and asymmetricstates. A
condition for the existence of symmetric
states is that their norm must exceed a
certain threshold value, interms of their
norm, an explanation to which is given.
The existence and stability of all states,
including a line of theSSB bifurcation,
are summarized in a single diagram,
whichis presented in Sec. IV also.
Results reported in this paperand
perspectives for further work are
summarized in Sec. V.




Model

The wunderlying 3D Gross-Pitaevskii
equation for themean-field wave
function.

For physical parameters relevant to
experiments with thecondensate of 7Li
atoms 45, i.e., a2 m, A00.5 nm, and 20
m, characteristic values of the number of
atomsin various patterns reported below
see, in particular, Figs.3dand 9fall into
the range of N between 200 and
1000,which is quite sufficient for
experimental manipulations
andobservation of the patterns. In the
same range of physicalparameters, t=1 in
Eq. 5is estimated as being tantamountto
10 ms, hence typical time scales for the
instability development or intrinsic
oscillations of breathers induced bythe
instabilities, which are reported below,
are expected to be in the range of 0.1-1
s, which is realistic to the
currentlyavailable experimental
techniques 45.

SRS eﬁl e_pltlleleltl settmg”s Ia sét . t"."el
strong local nonlinearity can be built, in
a planar waveguide, by means of known
nanotechnological methods. In that case,
the power of the laser beam necessary
for the self-trapping of transverse
nonlinearpatterns in the waveguide made
of silica may be 500 kw46, while using
AlGaAs, one may reduce the
necessarypower to the level of 1 kW 47.
In these settings, the characteristic
evolution length of the spatial beam can
be madeshorter than 1 mm. Obviously,
transitions between states ofdifferent
types reported in this paper may be
relevant to thedesign of power-controlled
optical-switching schemes. Onthe other
hand, the description of the planar
waveguide with the pair of embedded




stripes may require a model more
general than the one studied here, as it
will plausibly combine the transverse
modulation of the local nonlinearity with
asimilar linear potential which is briefly
described at the endof the next section,
as the material difference between
thestripes and host medium ought to
affect the linear index ofrefraction also.

The analytical solution given by Egs.13,
14, and 24make it possible to plot the
bifurcation diagrams in the planes of
and N,, which are represented by
curvespertaining to a=0 in Figs. 3a-3c.
To generate the diagrams, partial norms
Nin expression 25for the asymmetric
solutions were computed numerically
analytical expressions for them are
available, but they are very messy, cf.
Eqg.21for the symmetric and
antisymmetric  states. A salient
peculiarity of the SSB bifurcation for
a=0, evident in Fig. 3c, is its subcritical
character, which means that the branches
of asymmetric solutions emerge at the
bifurcation point as unstable ones, and
go in the backwarddirection. A
subcritical bifurcation also occurs in the
abovementioned model of the dual-core
nonlinear fibers 10, butin that case the
asymmetric branches quickly turn in the
forward direction, getting stabilized at
the turning point. A remarkable feature
of the present model with a=0 is that this
does not happen, i.e., the bifurcation in
this model may becalled a “fully
backward” one: the branches of the
asymmetric  solutions keep going
backward up to the limit of =1,which
corresponds to the asymmetric solutions
with =—and N=1, as shown in the
following  subsection.  Indeed,=—=
follows from the fact that the amplitude




appertaining to the lower sign between
the radicals in Eq. 24vanishes in the limit
of —»—.

In accordance with general properties of
the subcriticalSSB bifurcation 10, the
symmetric solution is expected to be
stable below the bifurcation point at
NNbif, see Eq.23 , and unstable above it.
The asymmetric branches emerging at
N=Nbif are unstable as long as they go
backward. In the present case a=0, this
means they are alwaysunstable, as the
respective branches in Figs. 3band
3cnever turn forward. All these
expectations are completelyborne out by
the stability analysis performed by
means of both direct simulations and
computation of stability eigenvalues, at
finite but small values of a technical
details of theprocedure are described in
the next section. In particular, atNNbif
the unstable symmetric state
spontaneously transforms into a strongly
asymmetric breather (mot séng phi tuyen
c¢6 ning luong tap trung theo kiéu cuc bo
hoac dao dong) which featuresirregular
oscillations, but remains robust as a
whole quitesimilar to an example
displayed below in Fig. 6 for a=0.7.0n
the other hand, unstable asymmetric
states transformthemselves into breathers
which maintain the original asymmetry
of the unstable state, as shown in Fig.
4.Lastly, all antisymmetric states in the
model with deltafunctions are unstable
too. Their instability is similar to
thatshown below in Fig. 7bfor a=1,
transforming them intostrongly
asymmetric breathers. As shown in the
next section,both asymmetric and
antisymmetric states may be stabilized in
the general model, with finite a.




The existence of the asymmetric states,
I.e., the presenceof the SSB effect in the
present model, can be easily explained
by the consideration of the above-
mentioned limit of——. Indeed, in this
limit, the spatial scale of the
solution,which is —12 according to Eq.
13, is much smaller thanthe separation
between the two delta functions,
22.Therefore, the full solution effectively
splits into a superposition of those
independently supported by each delta
function in isolation. Further, it is
obvious that, for given large, Eq. 12with
an individual delta function gives rise
totwo solutions: a trivial one.

where or note that the norm of solution
26is N=1, for any . The corresponding
symmetric and antisymmetric states are
built, respectively, as superpositions
ofsolutions + or, equivalently, —centered
at x=—1 andx= +1, or centered at x=—1
and + centered at x= +1. Asymmetric
solutions are represented, in the same
limit, by a superposition of solution
centered at x=—1 and zero solution
around x= +1, or vice versa. Of course,
finding hebifurcation point requires one
to perform the analysis of themodel at
finite , as done in the analytical form
above for thecase of the delta functions,
and will be done in a numericalform
below for the general case of finite a in
Eq. 6.1t is relevant to compare the above
exact results withthose which can be
easily obtained in  the linear
counterpartof the model, i.e., the one
with the DWP based on the set oftwo
delta functions; as mentioned above,
such a linear potential may be a plausible
ingredient of a more general model,
relevant to the description of NDWP
settings in optics. The stationary version
of the linear equation reduces to.




B. Results

The first significant change against the
results reportedabove for the model with
the delta functions a=0, which happens
with the increase of a, is quick
stabilization ofasymmetric states with
larger values of the norm, while
oneswith smaller N remain unstable,
originally. At a0.2, thesymmetric states
are stable for all values of N at which
theyexist. Another notable feature of the
bifurcation  diagrams  atfinite  a,
demonstrated by Figs. 3band 3d, is that
the normat which the SSB bifurcation
takes place, Nbif, first decreases with the
growth of a from small values up to a0.8,
andthen increases with the further
growth of a.

Close to their stabilization threshold in
particular, ata=0.2, asymmetric states
with a smaller norm, which are still
unstable, demonstrate a scenario of the
instability development different from
what was shown by their counterpart in
Fig. 4 in the case of very small a.
Namely, slow regularoscillations,
observed in Fig. 5 in this case, imply a
dynamical resymmetrization of the
unstable asymmetric state. Indeed,
densities x2, taken at points x= 1,
perform identical periodic oscillations,
with a phase shift of betweenthem, as
shown in Fig. 5b.

The stabilization of the asymmetric
states at small finitevalues of a is
explained by the change in the character
of theSSB bifurcation: at a0, there appear
turning points onbranches of asymmetric
solutions in the bifurcation diagram,cf.
Fig. 3c. Past the turning point, the branch




goes forwardas a stable one. In fact, Fig.
3cdemonstrates a quick transformation,
with the increase of a, of the subcritical
bifurcation into a supercritical one.
When the bifurcation is supercritical,
branches of the asymmetric solutions
emerge asstable ones at the bifurcation
point, and immediately go forward.We
do not display the quick transition from
the sub-tosupercritical bifurcation in full
detail, as it actually happensat very small
a, in the range of a0.1. The physical
estimates given in Sec. Il suggest that so
small values of thescaled width of the
nonlinear-potential  wells  correspond
tophysical widths 1 m. It seems doubtful
that theFeshbach-resonance technique
would allow one to create astrong local
inhomogeneity of the scattering length
on such asmall scale nevertheless, the
exact analytical solutions obtained for
a=0, which provide clear clues for the
understanding of the general model, are
definitely relevant. An additional
problem impeding the full analysis of the
case of verysmall a is that, in this case,
the accumulation of systematicnumerical
results requires very heavy simulations,
as the step size of the spatial grid must
be made much smaller than a.Above the
bifurcation point, symmetric states found
at finite a demonstrate the familiar SSB
instability, spontaneously transforming
themselves into slightly nonstationary
robust modes breathers, quite close in
their shape to respective stable
asymmetric solitons. A typical example
of thistransformation is displayed in Fig.
6.As concerns antisymmetric solutions,
both stable and unstable ones have been
found at finite a, as illustrated by Figs.7
and 8. Figure 7bshows that the density
profile of unstable antisymmetric states
evolves from the double-peakpattern into




an asymmetric single-peak one, which
features persistent intrinsic oscillations.
This outcome of the instability
development complies with the fact that
the instability ofthe antisymmetric states
Is oscillatory, being accounted for by a
quartet of eigenvalues, as seen in Fig. 8b.
In otherwords, the transition from stable
to unstable antisymmetric states may be
considered as the Hamiltonian Hopf
bifurcation 48.Figure 9 displays a
combined diagram in the plane of
thenorm of the solution and width of the
nonlinear potentialwells, N and a, which
summarizes  the existence  and
stabilityresults for the states of all three
types—symmetric, asymmetric, and
antisymmetric ones. The dashed-dotted
line in thefigure designates the
symmetry-breaking bifurcation. Solely
symmetric states exist below this line
they are stable in thatregion, and stable
asymmetric states exist above the
line,where the symmetric ones are
unstable. Solid curves in Fig.9 depict
stability borders of antisymmetric
solutions. For the reasons explained
above, the region of very smallvalues of
a, where the “quick” stabilization of
asymmetricstates takes place, is not
included. However, the region of
theexistence of the analytical symmetric
and antisymmetric solutions in the model
with delta functions a=0, and the
respective bifurcation point, as given by
Eqg. 23, are shownby the bold vertical
segment and square-marked dot on
theaxis of a=0 recall that the exact
asymmetric solutions areunstable above
the bifurcation point in the model with
a=0.

| lulati file_6d
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resultsare included in Fig. 9 for al.35, as
the convergence of thenumerical scheme
becomes poor for values of a still closer
to2.The chain of circles in Fig. 9
designates  the thresholdminimum
normNmin, necessary for the existence
of symmetric states in the model. As
mentioned above, in the caseof a=0 the
exact threshold is Nmina=0=12, and it is
observed in Fig. 9 that the threshold
remains in the ballpark ofthis value at
finite a, which can be easily explained.
Indeed,the minimum of N is attained at
——0, in which limit thespatial scale of
the wave function, 12, is much larger
than the size of the NDWP structure, 22.
Thus, from theviewpoint of this weakly
localized wave function, modulation
pattern 6looks like 2x. In the
corresponding approximation, the wave
function takes  the form of
expression26divided by 2, and the
respective norm is, indeed, 12.For
NNmin, the condensate confined to the
trap of largelength L i.e., in the
thermodynamic limitwill tend to form a
quasiuniform nearly linear state, with
x=NL. As follows from Eqs.8and 6, the
energy of the small-mplitude

uniform state isHO— N2L4. 33In fact,
this state realizes a minimum of the
energy cf. Fig.10, i.e., the system’s
ground state. Nevertheless, a wellknown
fact is that dynamically stable localized
states ifferentfrom the ground state, such
as the above-mentioned gapsolitons in
the repulsive condensate 30, or their
broadercounterparts in the form of the
so-called gap waves 49, canbe created in
the experiment.




stable asymmetric and antisymmetric
states above the stability border of the
latter state. Infact, the bistability always
takes place when antisymmetricstates are
stable. It is interesting too that the
stability area forthe antisymmetric states
consists of two separate regions.Finally,
it is relevant to mention that, as well as
in the analytically solvable model with
the delta functions a—0,
theantisymmetric states never undergo a
bifurcation at finite a.We stress that the
stability borders displayed in Fig. 9were
identified by means of direct simulations
and the computation of stability
eigenvalues, both methods yielding
identical results. In particular, the sets of
eigenvalues displayed in Fig. 8 clearly
confirm the presence of two disjoint
stabilityareas for antisymmetric states.

In the case of the bistability involving
the asymmetric andantisymmetric states,
it is interesting to compare their energies
values of the Hamiltonian. To this end,
Fig. 10 displays a typical example of the
dependence of on norm N.The situation
observed in this figure is also true in the
general case: stable antisymmetric states
realize smaller valuesof H than the
asymmetric counterparts coexisting with
them.However, as argued above,
dynamically stable states can becreated
in the experiment even if their energy is
higher thanin some competing states. In
particular, Fig. 6 demonstratesthat an
unstable symmetric state definitely self-
traps into an asymmetric robust breather
which is close to a stable stationary
solution, despite the fact that a stable
antisymmetricstate exists at the same
values of N=10 and a=0.7, as seenfrom
Fig. 9.Note that all curves in Fig. 10 start
from finite thresholdvalues of N
corresponding, as said above, to the




minimumnorm Nminnecessary for the
existence of the respectivestates. In
particular, for the branch of symmetric
solutions, Nmin is close to 12, as argued
above cf. the existence border in the
bottom of Fig. 9, while the asymmetric
branch originates at the bifurcation point
in agreement with thelocation of the
respective dashed-dotted line in Fig. 9,
atwhich the symmetric solution loses its
stability. The branchof antisymmetric
solutions features a fold in Fig. 10 in
theregion where these solutions are
unstable, which is similarto the above-
mentioned fact that dependence Nin
Eq.21for the unstable exact
antisymmetric states has a minimum,
Nantisymminl.84 at —0.58. If replotted
in termsof H and N, Eqg. 21features a
similar fold, at N=Nantisymmin.

V. CONCLUSION

In this work, we have introduced a
model of the NDWP,alias a double-well
pseudopotential, which can be created
INBEC, by means of the spatially
iInhomogeneous Feshbachresonance, and
also in nonlinear optics. The model
providesfor a previoulsy unexplored
setting in which effects of theSSB can be
studied.

he limit | ol well |
nduced—by—thedelta—funetion;  full

analytical solutions were obtained for
symmetric, antisymmetric, and
asymmetric states. The symmetric states
are stable in that case up to the
symmetrybreaking bifurcation point, but
beyond the bifurcation bothsymmetric
and emergent asymmetric states are
unstable. Inparticular, the asymmetric
configurations transform themselves into




breathers. The instability of all the
stationaryasymmetric states in the model
with the delta functions isexplained by
the fact that the respective SSB
bifurcation is ofa “fully backward” type,
with branches of the
asymmetricsolutions  never  turning
forward. All antisymmetric  states
areunstable too, in this limit form of the
model. The increase of the width of the
potential wells readilystabilizes the
asymmetric states, which concurs with
thechange of the character of the SSB
bifurcation from sub- tosupercritical.
Close to the stabilization border,
unstable asymmetric states develop slow
intrinsic oscillations, featuring effective
dynamical resymmetrization.

Antisymmetricstates may also be stable
in the NDWP structure with a finitewidth
of the wells, which implies the bistability
betweenasymmetric and antisymmetric
states. The symmetric statesexist above a
finite hreshold, in terms of the norm
numberof atoms in the condensate, and
they develop the usual SSBinstability
above the bifurcation point. A simple
explanationto the existence threshold
was given, and an integrated diagram for
the existence and stability of the trapped
states ofall three types has been
produced.

The analysis presented in this work
suggests new experiments in the matter-
wave and nonlinear-optical ettings.
Theanalysis can also be developed in
other directions. In particular, it may be
interesting to  study a  two-
dimensionalnonlinear-DWP
configuration. In the 2D space, a
triangularconfiguration ~ with  three
nonlinear pseudo-potential wellsmay be
considered too.







