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Bloch  functions— Ham Bloch-cac tinh chat chung

properties 11 h 15

general

In this chapter we discuss a
number of general properties of
eigen-functions in infinite
periodic lattices and in applied
electric and magnetic fields.
The discussion is presented
largely in the form of theorems.
BLOCH THEOREM

THEOREM 1. The Bloch
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dé cap dén mot sé tinh chat tong
quat cua cac ham riéng trong
mang tuan hoan vd han duéi tac
dung cua cac truong dién va tu.
Noi dung dugc trinh bay cha yéu
thong qua cac dinh Ii.
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theorem states that if F(x) is
periodic with the periodicity of
the lattice, then the solutions
<p(x) of the wave equation

(1) Hv(x) = v* + V(™) r(x)
= are of the form

(2)  "k(x) = e* xwk(x),
where uk(x) is periodic with
the periodicity of the direct
lattice.

Analytical proofs of this central
theorem are found in the
standard elementary texts on
solid state theory. The most
direct and elegant proof utilizes
a little group theory.

Proof: With periodic boundary
conditions over a volume of N3
lattice points, the translation
group is abelian. All operations
of an abelian group commute.
If all operations of a group
commute, then all the
irreducible representations of
the group are one-dimensional.
Consider the lattice translation
operator T defined by

(3) Tx=x+tmnp=x+ma
+nb + pc,

where m, n, p are integers; then

(4)  Tmnpcpk(x) = M(x + ma

+ nb + pc).
The operations T form a cyclic
group; because the

representations are

only one-dimensional,

(5)  T'mnpipk(x) =
Cmnp<Pk(x),

where Cmnp is a constant.
Because

(6) T 10(HPk(x) = ¥>k(x +
a) = Cioo™k(*),

we must have in particular for a




lattice having N lattice points
on a side

(7)  Tjtooiftix) = *k(x + iVa)
= (cmo)*VK(x).

But with periodic boundary
conditions

(8) *k(* + N&) = ~(x), so
that

(9) (cioo)* - I; thus Cioo
must be one of the N roots of
unity:

(10) cioo-eUiilN; {=1, 2, 3,
o ke N.

This condition is satisfied
generally by the function

(11) Vk(x) = e*xwk(x), if
wk(x) has the period of the
lattice and

(12) iVk = £a* + nb* + fc*,
(£, f integral)

is a vector of the reciprocal
lattice. For a lattice translation
t,

(13) <pu(x + 1)
e<k’(xtt)Mk(x  + 1)
eik'te ¥k *wk(x) = e**VkOO
_e<2*(f»i|+n,+j>1)/iV ,pk(x)i
as required by (5) and (10).
In other language, e**1® is the
eigenvalue of the lattice
translation operator Ta:

(14) Tn\(x) = e<k’t»"k(x),
where " is a lattice translation
vector; ~(x) is an eigenvector
of T,,.

THEOREM 2. The function
wk(x) of the Bloch function
Mx) = e*k‘xwk(x) satisfies the
equation

(15) " (p + K)2 + P(x)) wk(x)
= €kWKk(x).

This is equivalent to a gauge
transformation.

Proof: Note that, using p = —
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IV, we have the operator
equation

(16) petk'x =>= e*k*x(p -f k).
Thus

(17) P¥>k(X) = e<k'x(p + k
)wk(x), and

(18) pVk(x) = elkx(p + K)
V(x),

from which (15) follows
directly.

We may rewrite (15) as

(19) (V2 -i- 2tk m V) + F(x)"
uk(x) = \kwk(x), with

(20) Xt=£k - k\

2m

where £k is the eigenvalue of
(15). If F(x) = 0, a solution of
(19) is

(21) uk(x) = constant; Xk =0,
and

(22) £k =fc2; M(x) = eik'X,
2m

the usual plane wave. At the
point kK = 0 the equation for
UQ(X) is simply

(23) (- *V2 + F(X)™ u0(x) =
£0w0(x);

thus the equation for uO(x) has
the symmetry of F(x), which is
the symmetry of the crystal
space group.

Spin-Orbit  Interaction. The
hamiltonian  with  spin-orbit
interaction has the form
(Schiff, p. 333)

(24) H =+ F(x) + x gradyw-
p>

where d is the pauli spin
operator, with the components
(25) =(lo);=(i~0);=(0-l)
The hamiltonian (24) is
invariant under lattice
translations T if F(X) IS
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invariant  under T. The
eigenfunctions of (24) will be
of the Bloch form, but they will
not in general correspond to the
pure spin states a or fi for
which aza = a; <?2j8 = —(3. In
general

(26) <pkt (x) = Xkt (X)« +
7k t ()18 = eik'*uk t (x),

where the arrow | on the Bloch
function (x) denotes a state
with the spin generally up in
the sense that (“kt*kt) ~
positive. In the absence of spin-
orbit interaction <pT involves
only a; and <px only 0. The
arrows on Xkt and 7kj are
labels to indicate  their
association with <pk |,
THEOREM 3. With spin-orbit
interaction the function uk(x)
satisfies

are often treated as
perturbations for small k or
small changes in k from a
special wavevector ko.

The quantity

(29) 7t=p+o0 XgradV

has many of the properties for
the problem with spin-orbit
interaction which p has for the
problem  without spin-orbit
interaction.

TIME REVERSAL
SYMMETRY
The time reversal

transformation K takes x into
X; p into—p; dinto— d.

The hamiltonian (24) is
invariant under time reversal;
thus [H,K] = 0. For a system of
a single electron the result of
Kramers (Messiah, Chapter 15,
Section 18) for the time




reversal operator is

K = —iavKr

where Ko in the Sehrodinger
representation is the operation
of taking the complex
conjugate. Thus Ko has the
property for any two states ip
and \p that

(31) M) = (KOt,K0<p).
Further, with <rv2 =1,

(32) (Kf,Kv) = (KMNKW) =
also,

(33) Kw<p = (—iav)(—
icry)<p = —tp.

An important application of
time-reversed pairs of states
has been made by P. W.
Anderson [Phys. Chem. Solids
11, 26 (1959)]. He shows that
in very impure superconductors
we must consider pairs defined
by the time reversal operation,
rather than Bloch function
pairs.

THEOREM 4. If p is a one-
electron eigenstate of H, then
K<p is also an eigenstate with
the same energy eigenvalue in
the absence of external
magnetic fields. Further, K<p
Is orthogonal to <p. This is the
Kramers theorem.

Proof: The hamiltonian
commutes with K; therefore
K<p must be an eigenstate if
y> IS an eigenstate, and the
eigenvalues are the same. Now
by (32) and (33)

(34) (*9*”) = N(K2<psK<p) =
— (<p,K<p) =0,

so that and are linearly
independent.Q.E.D.
THEOREM 5. The states and
belong to wavevector — Kk, so




that ekT = e_kl and eki = e_kt.
Proof: Ktpki — —WyKo” = e-
** X (periodic function of x) j,
so that

(35) T=

apart from a phase factor. We
recall that <rv reverses the spin
direc-tion. We assign opposite
spin arrows to <p and K<p
because

(<Pkt>°"z¥’kT ) =
(Mf*<Pkt»"Pkf) = —
using oyr* = —<Tt<Ty. From

(35) and Theorem 4 we have
(36) £kt = e-ki > Sk| = £-kf-
Q.E.D.
The bands have a twofold
degeneracy in the sense that
each energy occurs twice, but
not at the same k. A double
degeneracy at the same energy
and k occurs only if other
symmetry elements are present;
with the inversion operation J
the energy surface will be
double at every point in k
space.
THEOREM 6. If the
hamiltonian is invariant under
space inversion, then
(37) *kT(x) = <p_kt(-x),
apart from a phase factor, and
(38) ekT=e KT.
Proof: The space inversion
operator J sends x into — Xx; p
into —p; and d into d. The
reason d does not change sign
Is that it is an angular
momentum and transforms as
an axial vector. Thus if JT(X) =
F(x), then the hamiltonian
including spin-orbit interaction
Is invariant under J. Then JA(x)
Is degenerate with (x). But

| U1 Wl




(39) Jipkt (x) =e_Ik'X T(-x)
iIs a Bloch function belonging
to — k, because the eigenvalue
of J<pk | under a lattice
translation operator T is
e~ik'tn. We may call w_K| (x) =
wkf (—x), whence

(40) " KkT(x)=

and

(41) ekf=e KT. Q.E.D.

It is simple to show directly, if
one wishes, that w_kf (x)
satisfies the same differential
equation as wkf (—x).

We recall that J commutes with
<rz, so that the expectation
value of <rz over <pk | and
A KT is the same. Therefore,
using (36), the com=bined
symmetry elements K and J
have the consequence that

(42) eki=-¢ekA,

where

(43)

apart from a phase factor.

The product operation

(43) C=KJ=~i<rvK0J =JK
will be called conjugation.
Conjugation reverses the spin
of a Bloch state, but does not
reverse its wavevector:

(44) CVfct = <pki,

apart from a phase factor. A
number of theorems involving
the opera-tions K and C are
given as exercises at the end of
the chapter.

THEOREM 7. In  the
momentum representation,
with G a reciprocal lattice
vector,

(45) *(*) = e*"2f0(k)

where the /o(k) are c-numbers,
the wave equation without




spin-orbit interaction is

(46) in (k + G)2/o(k) + | F(G
~ e)f*(k) = Sk/o(k)’

where g is a reciprocal lattice
vector and V(G) is the fourier
trans-form of V(x) between
plane wave states:

(47) 7(G) = fd3x eiG"*V(Xx).
The result (47) follows on
operating on (46) with H=T +
7 and taking the scalar product
with etk VG*x.

It follows from the
representation (46) that the
expectation value of the
velocity v satisfies

(48)  (klvk) = (klp/m[k) = m_1
J (k+ G)JG(k)|2

6

= gradk e(k).

The proof of the last step is left
to the reader. An alternate
deriva-tion is given as Theorem
11.

It also follows that the effective
mass tensor defined by

(49) (£),.-££e«

is equal to (Problem 8):

(50) &ir*+%G<il,a(kr)
THEOREM 8. The energy ek is
periodic in the reciprocal
lattice; that is,

(51) sk =sk+G-

Proof: Consider a state <pk of
energy ek; we may write

(52) <pk = eik%(x) =
ei(k+G)'x«k+G(x) = <pk+G,
where

(53) WKk+o(x) = e-1G**wk(x)
has the periodicity of the
lattice. Thus may  be
constructed from <pk; it
follows that Bk = ek+G.

1




We now develop an important
theorem related to the effective
mass tensor (1 /TO)MV
defined by (50), which is
equivalent to

e,= kk +mee.

2m \m*/py

THEOREM 9. If the state <pk
at K = 0 in the band y is
nondegenerate, except for the
time reversal degeneracy, the
effective mass tensor at this
point is given by

where 8, y are band indices and
the zeros stand for k = O.
Without spin-orbit interaction p
replaces tc, and usually it is
sufficiently accurate to write p
for «. The result (56) is referred
to also as the /-sum rule for k =
0.

Proof: In the equation (27) for
uk(x) we treat

(57)

as a perturbation, with the
hamiltonian for k = O treated as
the unperturbed hamiltonian.
We could equally expand about
any other wavevector, say kO.
Let wus consider first the
diagonal matrix elements of H'.
If the crystal has a center of
symmetry, then

(58) (yO\*\°y) =0

by parity; further

(59) <TOIX|C7) =0,

by Exercise 5, with | Cy)
denoting the conjugate state to
|Oy). The spin indices are not
shown in our present notation.
If the crystal does not have a
center of symmetry, we must




consider the matrix elements
for the particular symmetry
involved. Thus at the point T in
the zinc-blende structure the
twofold representations r6 and
r7 of the double group satisfy
the selection rules (see Chapter
10)

(60) r6 X Tv=r7+18;r7xrv
=16 + 18,

where IV is the vector
representation. These rules are
given by G. Dresselhaus, Phys.
Rev. 100, 580 (1955), along
with the character table.
Because * transforms as a
vector, the rules tell us that *
does not have diagonal matrix
elements within the twofold
representations. Thus the first-
order energy correction from
H* wvanishes. In Problem
(14.4), we have a situation in
which the first-order energy
does not vanish.

The energy to second order is
(61) *00 - *(0) +f + -tI'

v 2mm t Sy0—2ao
where on the right-hand side
we have included the kinetic
energy associated with the elk
x modulation. The result (56) is
obtained if we write (61) in the
form

(62) e?(k) =e7(0) + — ) Kjc,
+

By going to higher orders in
the perturbation theory we may
construct the entire energy
surface. The method is referred
to as k « p perturba—tion theory.
The eigenfunction to first order
inkis

(63) +




If further degeneracy exists at
the point k = 0, we must apply
degen-erate perturbation
theory, as in Schiff, pp. 156-
158. The valence band edge in
important semiconductor
crystals is degenerate; the form
of the energy surfaces is
considered in a later chapter on
semiconductor bands, but an
example will be given below.
We can draw some immediate
conclusions from the form of
(61). If one e70 — £«o0 Is very
small, the form of the band y
near k = 0 will be determined
largely by the matrix elements
connecting it with the band 8;
and, vice versa, 8 will be
determined by y. Further, if the
energy denominator is very
small, the effective mass ratio
m*/m will be very small. An
extreme example may be cited:
It is believed that the energy
gap in the semiconductor
crystal Cd"Hgi*Te (x = 0.136)
is less than 0.006 ev, and the
experiments suggest also that
m*/m ~ 4 X 10-4 at the bottom
of the conduction band.
According to calculations by F.
S. Ham, Phys. Rev. 128, 82
(1962), the effective masses at
k = 0 in the conduction bands
of the alkali

values:

Na K Rb Cs

33 4s 58  6s
0.9650.86 0.78 0.73

Metal Li

Band index 2s m*/m %, 33




Suppose that the order of the
bands near k = 0 in an alkali
metal is the same as the order
of the states in a free atom.
Then in Li all the perturbations
on the 2s conduction band will
come from p levels higher in
energy than 2s, as there is no 1
p level; for Li esO — £Po < 0,
so that m < m*. For Na the 3s
conduction band is perturbed
about equally, but in opposite
directions, by the 2p levels
below and the 3p levels above
3s in energy, and thus m* = m.
As we go further along in the
alkali series, the perturbations
from below increase in effect
relative to those from above,
and m* <m,

Degenerate k ¢ p Perturbation
Theory. The simplest example
of k * p perturbation theory for
degenerate bands occurs in
uniaxial crystals with a center
of symmetry. Suppose we have
a band of s-like symmetry at k
= 0 lying above by an energy
Eg a pair of bands degenerate
at k = 0 and transforming at
this point like x and y. The
symmetry axis is along the z
direction. The state which is z-
like at k = 0 will be neglected
implicitly: we assume that the
crystal potential splits z off
from the other states by an
energy large in com-=parison
with Eg. We neglect spin-orbit
interaction in this example.

We note that the first-order
energy correction vanishes
from the perturbation (I/w)k
p, by parity. The second-order




energy involves the matrix
elements
(64) <sftf'ix> = —J (sk -
pU>0'lk * plz> =0,
mEg?7
also by parity; here j = X, .
Further,
(65) (X\H"\x) = (x\k * p|s)(s|k
* plx) = - ]<z|px|s>|2;
(66) (x\H™y) = (x\k * pls)(slk
* ply) = - <*|p*IsXsWz/>-
By symmetry (slpjj?/) =
(S|px|z); thus we may write, for
I, j=Xxory,
(67) (i\H"\j) = —AKikj-, A=
The secular equation for the
three states is
Eg+ Akx2 + ky2) -X 0

0
0 —Akx2 — X — Akxky
0 — Akykx —Aky2 — X
which is also the value of <ylk
* pyz)(yz2\k - ply). The
contributions of the d states to
the off-diagonal elements
vanish. Thus (71) becomes, in
general,
Akx2 -f- Bk2 -f- X
Akxk
Akykx Aky2 + Bk2 + X
X,,; = — BKk2;
Xk = - BKk2 - A{k2 + ky2).
The surfaces of constant energy
are figures of revolution about
the z axis. One surface (that
with the + sign) describes
heavy holes; the other surface
describes light holes.
ACCELERATION
THEOREMS
THEOREM 10. In a steady
applied electric field E the
acceleration of an electron in a
periodic lattice is described by

1




k = eE,

and the electron remains within
the same band. We suppose
that the band is nondegenerate.
First proof: If the electric field
Is included in the hamiltonian
in the usual way as a scalar
potential <p = — eE * x, the
nonboundedness of X causes
some mathematical difficulty.
The simplest approach to the
problem is to establish the
electric field by a vector
potential ~ which  increases
linearly with time. We set

A = —cEt;

thus

_1dAME=—grad<p — =
E,

Cdt

as required. The one-electron
hamiltonian is

It is useful to become familiar
with the classical motion of
free electrons in the vector
field A = — cEt:

H=r—(p +eE1)2;

the hamiltonian equations are
(82) p=—dH/dx —0; - x =
dH/dp = (p + eEt)/m.

On quantum theory for a free
electron

(83) ip = [p,tf] =0; ix — [X,H]
= z°(k0 + eEt)/m,

where kO is the eigenvalue of
p, which is a constant of the
motion.

Observe that the hamiltonian
(80) has the periodicity of the
lattice, whether or not E is
present. Therefore the solutions
are precisely of the Bloch
form:




<PKk(x,E,0 = eik'xuk(x,E,t),
where  uk(x,E,t) has the
periodicity of the lattice; here
the time t is viewed as a
parameter.  The  functions
«rk(x,E,£) for band y can be
expanded as a linear
combination of uak(x,0)—the
eigenfunctions of all bands for
E = 0. We see that bands can
be defined rigorously in the
electric field and k is a good
guantum number: in this
formula-tion k is not changed
by the electric field!

We now treat the time t as a
parameter and compare the
Kinetic energy term (p + eEt +
K)2/2m in  the effective
hamiltonian for «k(E,2) with
the Kinetic energy term (p +
eEt" -f Kk%2/2m in the
hamiltonian for uk’(E,t"). The
two hamiltonians will  be
identical if

(85) eEt+ k=eEt' +Kk/,

so that the state and the energy
at k,£ are identical with those
at k', t' if (85) is satisfied. Thus
an electron which stays in a
given state k will appear to
change its properties in terms
of the states classified in k at t
=0asif

k =eE.

That is, an electron in ** at t =
0 will at a later time t be in a
state having the original k, but
with all the other properties
(including the energy) of the
state originally at k — eEt. The
current in the state k is related




to the expectation value of p —
(e/c)A; the current will tend to
increase linearly with time
because A cc t.

Because eE(t — t') is invariant
under spatial translation, it will
not cause k to change. We must
still show that an electron at k
in band y will at time t still be
in the same band. That is, we
need the adiabatic theorem,
which states that a transition
between states a and 7 is
unlikely to occur if the change
in the hamiltonian during the
period 1/o)ay is small in
comparison with the energy
difference ioay:

(87)

Our states a and y are states of
the same Kk, but in different
bands. The condition (87) is
very easily satisfied—it is
difficult to violate over an
extended volume of a crystal.
The argument of the present
theorem is due to Kohn and to
Shockley. The vector potential
A =—cM can be established in
a ring-shaped crystal Dby
changing magnetic flux at a
uniform rate through an infinite
solenoid running through the
inside of the ring.

Second 'proof: We write H —
HQ + H', where

(88) = Y(2); H=—F *x,
with F = eE as the force on an
electron in the electric field.
Now note that

(89) gradk ~(x) = ixM(x) +
e*,x gradk e"ik'x<Pk7(x).

Then




(90) H = H* + iF « gradk)
where

(91) Hv = Ho- ieik'x¥ « gradk
e"**

acts as invariant under a lattice
translation because the term in
F does not mix states of
different k, but only of the
same k of different bands. If
<pk7(x) are the eigenstates of
Hq, then

(92) -i(Sk'|le*-*F » gradk

= — i J dzx et(k-k')-* UytW *
gradk uky,

which vanishes except for k =
k' because the term ufs gradk
ukr is invariant under a lattice
translation. It follows that Hw
gives interband mixing, but
only the term iF ¢ gradk in the
hamiltonian (90) can cause a
change of k. Notice that in the
present formulation, unlike the
earlier one with a time-
dependent vector potential, k is
not a constant of the motion.

Consider the problem of a free
electron

(93) <Pk = etk‘xe-taW

in an electric field. The time-
dependent Sehrodinger
equation is

so that

dadk.1

(96) Tt-Tt™* ="nk

or

97 §=F.w-—

The same argument applies in a
crystal. We define a set of
func-tions XKT(x) as the
eigenfunctions of

(98) HpXky = £k7Xky




The time-dependent equation is

99) i ~ = (H, + tF =«
gradk)Xk.

at

We try a solution with Xk
confined to one band:

(100) xk = the derivative is

Ny AXk {da., .dk \
(101) * *m=\Tt+1 Jt mgradV
or, on comparing (99) with
(101),

dk, 0

(102) -=F. <wl

Thus the acceleration theorem
is valid in the basis Xk-r of
Bloch states for which the
polarization effect of the
electric field has been taken
into account by the hamiltonian
Hv.

For very short time intervals it
can be shown that the motion
of an electron in a crystal is
governed by the free electron
mass and not by the effective
mass; see, for example, E. N.
Adams and P. N. Argyres,
Phys. Rev. 102, 605 (1956).

We give now a theorem which
connects the expectation value
of the wvelocity with the
wavevector, thereby enabling
us to use the accelera-tion
theorem to connect the change
of wvelocity and the applied
force; see also (49).
THEOREM 11. If (v) is the
expectation value' of the
velocity in a state |k7), then
(103) (v) = i([H,x]) = gradk
Bky,

in the absence of magnetic

Tl




fields.

Proof; We consider the matrix
element in the band y:

(104) <K|tfx]k> = f d3x
u$(x)e-*"[H,x]eik-*uw(x).
Now

(105) gradk (e“= —

le~ik*xHeik'x

+ ie~{k’xHxelk'x —

ie~ik'x[H,x]Jeik’x;

further, we have seen in (15)

that

(106) H (p,x)eikx = eik‘xH{ p

+ Kk, X).

Thus

(107) (k|[if,x]jk) = —i | dzx

wk(x)(gradk

e~ik'xHeik'x)uk(x)

= -1 ] d3x wk (x)(gradk H(p +

K,X))wWk(X).

Now use the Feynman

theorem, namely

(108) J- <k|H|k> = k| ™ |k),

where X is a parameter in the

hamiltonian.  Thus  (107)

becomes —i gradk £k, and

(109) <*> = gradk £k.
Q.E.D.

Further, as (x) is a function of k

alone,

(H°) jt (x) = gradk gradk ek, or,

by (55),

-<*> = F (1\. dr™ dt \m*Jrfl

If £k = k2/2m*, then

(111) m*~(x) = F.

dt

It is more difficult to treat

rigorously the motion of a

lattice electron in a magnetic

field. Particular problems are

treated at several points in the

text. For a general discussion

and further references, see G.

H. Wannier, Rev. Mod. Phys.

il




34, 645 (1962) and E. J. Blount
in Solid state physics 13, 306.
For electrons in nondegenerate
bands and  not-too-strong
magnetic fields the result of the
detailed calcula-tions is that
the equation of motion (111)
may be generalized to

(112) F = e"E+|vx H",

We now give several theorems
concerning special functions—
Wannier functions—which are
sometimes used in discussions
of the motion of lattice
electrons in perturbed
potentials and in electric and
magnetic fields.

WANNIER FUNCTIONS

Let ~(x) be a Bloch function in
the band vy; the Wannier
functions are defined by

(113) wy(z - x.) = AT» X e-
"WX),

K

where N is the number of
atoms and xn is a lattice point.
THEOREM 12. The Bloch
functions may be expanded in
terms of Wannier functions as
(114) (x) = N~H X
«<kK*Fti>(x - x,,).

n

Proof: From the definition of
W,

(115) *>k(x) N~» X X o-"-
NvW

n K'

= 2V-1 J ei(k~k,)'x"<pk'(x) =
<pk(x).

K',n

THEOREM  13.  Wannier
functions about different lattice
points are orthogonal, that is,
(116) j dzx w*(X)w(x — xn)




=0, xn 0.

Proof:

(117) f dzx w*(X)w(x - xn) =
N~% J f dzx e“ik‘ *»"(x)"k.(x)
JKkk'J

=JV-*X=«0, K

The Wannier functions tend to
be peaked around the
individual lattice sites xn. We
examine this under the special
assumption that

(118) <pk =e*'xMO(x),

where u0(x) is independent of
k. Then

(119) w(x - xn) = N~HuO(x) J
e*_(*_*n)_

In one dimension with lattice
constant a,

2ir

(120) iVa’

where m is an integer between
+%N. Then

(122)

for Ny> 1, and

sin {T(X — xn)la} W(x —
xn)/a)

In three dimensions we have
the product of three similar
functions. Thus the Wannier
function assumes its largest
value within the lattice cell
about xn, and it tails off as we
go out from the central cell.
THEOREM 14. If s(k) is the
solution of the unperturbed
one-particle periodic potential
problem for a nondegenerate
energy band, then the
eigenvalues with a slowly
varying perturbation H'(x) are
given by the eigenvalues X of
the equation




(124) [e(p) + H(JU(KX) =
\U(x),

where e(p) is the operator
obtained on substituting p or —
I grad for k in e(k) in the band
y; U(X) has the property that
(125) x(x) =2 U(xn)w(x - xn),
n

where %{x) is the solution of
the Sehrodinger equation

(126) [Hg + H (Ix(x) =
XX(X).

Proof: A clear proof is given by
J. C. Slater, Phys. Rev. 76,
1592 (1949). A treatment of a
similar problem for weakly
bound donor and acceptor
states in semiconductors is
given in Chapter 14; the
method given there is the one
most often used in practice
when quantitative calculations
are carried out.

In a magnetic field (124)
becomes

U(i) = W(x),

as demonstrated by J. M.
Luttinger, Phys. Rev. 84, 814
(1951). In the expansion of s(k)
any product of k’s is to be
written as a symmetrized
product before making the
substitution k —> p — e/cA.
An example of effects arising
from the noncommutativity of
the components of k in a
magnetic field is given in
Chapter 14.

PROBLEMS 3 h 30

1. If Oi has the property
(128) KOIiK~I = Qi+,

show that




(129) {<p\Ox\K<p) =0.

For Oi we may have a
symmetrized product of an
even number of momentum
components, or any function of
X.

2. For O\ as defined in the
first problem, show that

(130) (<P\OI\<P) =
(K<p\0i\K<p).

3. If 02 has the property
(131) KO2K-1 = -02+,

show that

(132) (M02k> = -
(K<p\Oz\K<p).

4. Show that the results of
1, 2, 3 hold if everywhere C =
KJ is written for K; the states
are now assumed to be
eigenstates of a hamiltonian
invariant under C.

5. If COC~I = 0+ show that
(133) <Tk|O|kd,>=0;

here O might be p, a
symmetrized product of an
even number of linear
momenta, or the spin-orbit
interaction; show further that
(134) <Tk|O|kt> - <|kiOJK|).

6. If COC~I = —O0+, show
that

(135) <tk|01kf) = -UK|0|k.I>;
here O might be L or d.

7. Prove (49); use (47) and
the normalization condition
gradk ™ |[/o(k)|2

8. Prove (51).

9. Evaluate the effective
mass tensor (56), with p written
for w, in the limit of separated
atoms. The wavefunctions may
be written in the tight binding
form as

(136)




where v is an atomic function
in the state y. It is assumed that
t»’s centered on different
lattice sites do not overlap. We
find that <7k|p|k5) = (vt|p|t>«),
where vy and % are different
states of the same atom. Now
(137) My\p\8) = (Bs -
ey)(y\x\8), so that

(138) (-£) = [l - 2m X (S» -
M(-»W=*>12] - 0,

\Jrl J xx j

on application of the atomic /-
sum rule. Show that (136)
satisfies the  trans-lational
symmetry requirement (14).

10.  (a) Show that an electron
in a crystal in an electric field £
will oscillate according to

(139) e(x — x0) * £ = £(k0 +
eft) — E(kO0),

from conservation of energy.
The  amplitude Ax  of
oscillation is Ax = As/e[£|,
where Ae is the width of the
band. (6) Estimate Ax for a
reasonable electric field, (c)
Estimate the frequency of the
motion.

11. Consider a Bloch state
which is nondegenerate at k =
0. Using <pk(x) as an
expansion of ”"o(x) to first
order in k * p, show by direct
calculation that

<kWk>-*(£)./

1o Rrillouin




