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Semiconductor crystals: 1l. Optical | Cac tinh thé ban dan: II. Hap thu

absorption and excitons
DIRECT OPTICAL TRANSITIONS

In the process of direct photon
absorption a photon of energy « and
wavevector K is absorbed by the
crystal with the creation of an electron
at kei in a conduction band and a hole
at khoie in the valence band. The scale

quang hoc va cac exciton

DICH CHUYEN QUANG HOC
TRUC TIEP (DICH CHUYEN
KHONG THONG QUA PHONON)
Trong qué trinh hip thu photon tryuc
tiép, mot photon cé ning luong...va
vector song K dugc hip thu boi tinh
thé dong thoi tao ra mot electron c6
vector song kei trong vung dan va 16
trbng c6 khoie trong ving hoa tri. Do
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of wavevectors of optical photons is of
the order of 104 cm-1 and may almost
always be neglected in comparison
with the scale of wavevectors in the
Brillouin zone, 108 cm-1. The
conserva—tion of wavevector in the
absorption process requires

FIG. 1. Direct absorption processes in
(@) and (6); the absorption process (c)
is indirect and takes place with the
emission or absorption of a phonon.

we may usually replace k' by k. Thus
[<5h:fp|k-y)[2 determines the intensity
of the transition; this same quantity

I6n cua cac vector s6ng cua Cac
photon quang hoc vao ¢& 104 cm-1 va
gan nhu c6 thé b qua so véi do 16n
cia cac vector so6ng trong wvung
Brillouin, 108 cm-1. Bao toan vector
séng trong qué trinh hap thu doi hoi
(budc)

(1)




determines the mutual interaction of
the two bands 7, 6 in the reciprocal
effective mass tensors. We see that
bands which perturb each other
strongly are always connected by
allowed optical transitions for the
direct absorp-tion or emission of a
photon.

INDIRECT OPTICAL
TRANSITIONS

Sometimes, as in Si and Ge, the
minimum energy difference between
the valence and conduction bands does
not occur for Ak — 0, but the band
minima fall at different k values and
cannot be connected by an alowed
optical transition. If this is true, the
threshold of strong optical absorption
will lie at a higher energy than the
energy gap. But at energies slightly
above the energy gap a weak
absorption takes place with the
emission or absorption of a phonon of
wavevector Q:

(4) kel + khole + g™O.

If the conduction and valence band
edges do not lie at the same point in k
space, the indirect or nonvertical
process will dominate the optical
absorption over the appropriate energy
interval. The energy balance

w = £(kc) - e(k,,) = co™

at absolute zero no phonon is available
to be absorbed in the process and here
the positive sign must be taken on the
right-hand side. At higher
temperatures  there are thermal
phonons available to be absorbed, and
photon absorption may take place at
an energy lower by 20)phonon, where




the phonon has a wavevector of
magnitude close to the difference |kc
— k,,| at the band edges.

The intensity of the indirect
transitionl is determined by second-
order matrix elements of the electron-
phonon and electron-photon
Interactions.  Second-order  matrix
elements for processes in which a
phonon is absorbed involve

Here the ¢’s are electron operators and
the a’s are phonon operators. The form
of the electron-phonon interaction was
discussed in Chapter 7. In the process
described the electron is initially at k
— ¢ in the valence band y and the
phonon occupation number is nqg for
wavevector ¢. In the final state the
electron is at k in the conduction band
8 and the phonon occupation is nq —
1'. The corresponding matrix element
for emission of a phonon is written
down by using the terms c£_qcka” of
the electron-phonon interaction.

Actually there will be a number of
threshold energies because in principle
every branch of the phonon spectrum
will  participate at the same
wavevector, but at  different
frequencies. Optical measurements
have been able in this way to
determine directly the difference in thi
wavevectors of the conduction and
valence band edges, provided tha the
phonon spectrum itself is known, as
from inelastic neutron scatter-ing
studies.

OSCILLATORY MAGNETO
ABSORPTION LANDAU
TRANSITIONS




In the presence of a strong static
magnetic field the optical absorp-tion
near the threshold of the direct
transition in  semiconductors is
observed to exhibit oscillations. That
Is, at fixed H the absorption
coefficient is periodic in the photon
energy. In a magnetic field the
interband transitions (Fig. 2) take
place between the Landau magnetic
levels in the valence band and the
corresponding levels in the conduc-

1 See Bardeen, Blatt, and Hall,
Proc. of Conf. on Photoconductivity,
Atlantic City, 1954 (Wiley, 1956), p.
146.

Fig. 2. Schematic diagram showing
the magnetic levels for kz = 0 as
labeled by n (kz = Q) for two simple
bands. The possible transitions are
shown for the case in which the direct
transition is allowed by parity.

tion band. Such transitions are called
Landau transitions. In a magnetic field
parallel to the z axis the energies in the
two bands, if nondegenerate, are

where o0>c, uv are the cyclotron
frequencies and nc, nv are the
anomalous magnetic moments. The
spatial parts of the wavefunctions in
each band are of the form \p{x) —
UO(X)F(x), where UQ(X) is the Bloch
function in the appropriate band for k
=0 and, from Eq. (11.13),

(7) Fn(x) = ei(kevtk™<pn(x -
ckv/eH)

in the Landau gauge. Here Fn is the
solution of the appropriate Wan-nier
equation and <pn is the harmonic
oscillator wavefunction for the nth.
excited state.




The matrix element for optical
absorption is proportional to

(8)  (nckcykcz\p\nvkvykvz) = / d3x
u*c (X)puov(x) f dzxF*c(x)Fnv(x),
crystal

where we have broken up the integral
by treating the F’s as essentially
constant over a cell. The integral
involving the F’s will vanish unless
k°y = kvy\ k\ = k\\and nc = nv. This is
analogous to the selection rules
conserving k in the absence of a
magnetic field. The equality of the n’s
follows by the orthogonality property
of harmonic oscillator wavefunctions,
noting that these do not depend on the
effective  mass. The  allowed
transitions have An = 0, as indicated in
Fig. 2. After integrating the transition
probability over the density of states
for 2, it is found that the absorption
coefficient is proportional to

The theory of oscillatory
magnetoabsorption for degenerate
bands and also for indirect transitions
has been given by Roth, Lax, and
Zwerdling, Phys. Rev. 114, 90 (1959).
We note that magnetoabsorption
experiments are particularly valuable
in determining the param-eters of a
direct conduction-band energy surface
which, because it is not the band edge,
cannot be kept populated sufficiently
to permit a cyclotron resonance
experiment to be made; further, the
experiments involve the anomalous
magnetic moments or g factors.

EXCITONS

An exciton is defined as a
nonconducting excited electronic state
in a perfect insulator, usually a




nonmagnetic insulator. It is usual to
speak of two types of excitons: a
tightly bound or Frenkel exciton and a
weakly bound or Mott exciton. Both
types of excitons may be thought of as
bound states of an electron and a hole;
there is no sharp division between the
two types. In a Frenkel exciton there is
a high probability of finding the
electron and hole on the same atom in
the crystal; in a Mott exciton the
wavefunction in the relative
coordinate extends over many atoms.
Frenkel excitons are realized in alkali-
halide crystals and in many crystals of
aromatic molecules; Mott excitons are
found in semiconductor crystals
having small energy gaps and high
dielectric constants.

The machinery we developed for the
inpurity-state problem may be taken
over directly to the discussion of
weakly bound excitons, of radii large
in comparison with a lattice constant.
For this reason, and because their
experimental picture is richer, we limit
ourselves here to the discussion of
weakly bound excitons.

If both the conduction and valence
band edges are spherical,
nondegenerate, and are located at k =
0, the exciton spectrum and
wavefunctions are obtained readily by
an extension of the result found above
for electrons bound in impurity states.
We introduce the rela-tive and center-
of-mass coordinates

where both me and m* are usually
positive. The effective hamiltonian in
a cubic crystal is

The part of the wavefunction in X




must contain a factor etK'x; the part in
the relative coordinates contains a
factor Fn(x), where

(12) (ipl

Is the hydrogenic wave equation with
the reduced mass

(13)

and dielectric constant e. In direct
analogy to the treatment of impurity
states in Chapter 14, the total exciton
wavefunction is

(14) #ic»(X,x) = eilKXF n (Xx)
<pc(xe)<pv(xh),

where <pc(xe) is the Bloch function at
k = 0 in the conduction band and
<Pv(Xh) is the valence band function
at k = 0. The excitation is propagated
in the crystal as a wave of momentum
K.

The energy of the state (14) is

(15)

referred to the conduction band edge.
For bound states En is negative and
the total exciton energy at low K is
negative with respect to a separated
hole-electron pair. For the hydrogenic
hamiltonian (12) the energy is, with %
restored,

(16)

for e = 5 and /i = 0.5m the ionization
energy (n = 1) of the exciton is about i
ev. We note that the minimum energy
required to create an exciton starting
from the ground state of the crystal is
(17) A’=K~

where Eg is the energy gap.

Excitons created by photon absorption
from the ground state of the crystal are
created near K = 0; therefore the direct
exciton absorption spectrum is a series
of sharp lines Dbelow the optical




absorption edge of the crystal. It is
somewhat unusual to find a crystal in
which there are two spherical band
edges at k = 0, but this is apparently
the situation in CU20, for which the
exciton  spectrum IS closely
hydrogenic.

For general energy surfaces the
exciton problem is best formulated
using the coordinate transformation
(18) p =i(xe + xfc); x = xe - xfcj

rather than with the transformation
(10). It is instructive to reexam-ine
the problem we have just solved. The
hamiltonian (11) is trans-formed with
the use of

Thus, if Il, p are the momenta
conjugate to p, X, we have for the
special case of spherical surfaces

If we look for a wavefunction of the
form

the equation for Fn(x) is

The eigenvalue of (12) to second order
in K is found by K * p perturbation
theory:

(24) g+1g+1(-1--1V gH*-Pi

% 8ju4\me mh/ 1 En — Ei

But by the atomic /-sum rule on the
hydrogenic states I, n,

2 v, {n\v»\D)(I\p>\n) ,,

(25)

whence (24) becomes

<26> + 2(SN)**-

in agreement with (15).

The extension of the present treatment
in the coordinate system (18) to




ellipsoidal band edges follows directly
on using the components of the
reciprocal mass tensors in (19) and
(20). The further extension to
degenerate band edges is complicated
in practice, but follows by using
matrix operators for the
multicomponent state functions at
each band edge; see G. Dresselhaus,
Phys. Chem. Solids 1, 14 (1956). In
practice various approximate dodges
are often employed to avoid
confronting the complexity of the
multicomponent equations.

We now discuss the intensity of
optical absorption for a process in
which an allowed (electric dipole)
transition creates an exciton from a
filled valence band. We take the bands
to be spherical about k = 0 arid
nondegenerate. From (14) the exciton
wavefunctionat K=0is

(27) #0On(x) = Fn(xe ~
xh)<pc(xe)<pv(xh),

and in this scheme the wavefunction
of the initial state is simply unity.

This is not the clearest way to treat a
many-electron problem; it is better to
use the formalism of second
guantization, as in Chapter 5. We
denoted the filled valence band by
i>0! then we define

this is a state in which an electron has
been raised to the conduction band at
k, leaving a hole in the valence band at
k. The nth exciton state for K = 0
may be written

#n = 2#k(k|n) = T atik#o(k|n), k k

The electric dipole absorption is
determined by the matrix element
(ck|p|ki>) of the momentum p between




the state k in the valence band and the
state k in the conduction band. In
second quantization the momentum
operator is

P = X Cki'Ck* / d*x "k{'(X)p"Ki(x),

or, with | denoting the valence band v
and V the conduction band c,

(30) P =Jaf/3+k<ck|plk!;).

k

Then the matrix element of p between
the vacuum and the nth exciton state is
(31) <$n|p|$0> = J
(nk'’X~010_k'ttk'ak"0—

k[*oXc Mp|kv>

k'k

= 2 (nk)(cK|p[kw). k

The  transition  probability s
proportional to

(32) [<$npl$o)l2 = |[(clpli>)[2 (2
<nlk)) (3 (k'[n)),

k k'

if (ck|p|kv) = (c|p|i>) over the range of
k involved. But the (k|n) are such that
in (32)

F,,(x) = X e*k'r(k[n);

F,,(0) - 2<k|»>,

and thus the transition probability
involves
I(f.[p[*0)[2 ££ |<c|p|c>[2[F,,(0)[2.

For spherical masses Fn(0) is nonzero
only for s states; for hydrogenic s
states |*n(0)|2 « n* 3, if n is the
principal quantum number.

“First forbidden” electric dipole
transitions arise when the transition
probability is  proportional to
\dFn(0)/dx\2, which is nonzero only
for p states. Thus when electric dipole
transitions are forbidden, with Fn(0) =
0, we may still observe excitons




because (ckjplkv) j* O, but the n — 1
exciton will be absent. There are no p-
states for n = 1. This appears to be the
picture in Cu20. The n = 1 line can
actually be seen very faintly; Elliott
[Phys. Rev. 124, 340 (1961); 108,1384
(1957)] suggests the weak transition is
by electric quadrupole radiation.
Longitudinal and Transverse Excitons.
We have seen in Chapter 3 that the
dielectric polarization field of a cubic
crystal has longitudinal and transverse
modes, with a frequency splitting
determined by the polarizability. In a
covalent crystal the polarizability is
determined by the excited electronic
states of the crystal; that is, the
polarizability depends on the nature of
the exciton states. An exciton is in fact
the quantum unit of the polarization
field. The polarization splitting of
longitudinal and transverse excitons
was derived in Chapter 3 on the
assumption that the wavevector of the
excitation was small so that the
dispersion  of  the  uncoupled
polarization could be neglected. At the
same time we supposed the
wavelength was small in comparison
with the dimensions of the crystal, so
that shape effects could be neglected.
We continue here to make the same
approximation; although the
wave-vector of the incident photon is
very small compared with the extent
of the first Brillouin zone, the crystal
IS supposed to be large in com-parison
with a wavelength.

Photons are transverse and in cubic
crystals couple only with transverse
excitons. That is, a photon with k || z
in a crystal with an s conduction band
edge and an X, y, z degenerate valence
band edge will couple with the exciton




bands made up from hole
wavefunctions in the xoiy bands and
electron wavefunctions in the s band;
there is no Azpz term in the
interaction. To see this we work in the
gauge div A = 0 and consider the
electromagnetic wave

(35) A=

Then the wave is polarized in the y
direction:

H = curl A = — ikxe~i(at~kz);

(36) 13A.a)A..,

E i-

cdtc

and (36) has A « p coupling only with
sy excitons. The  polarization
associated with these excitons is
purely transverse for k || z; only sz
excitons have a  longitudinal
polarization for this direction of k.

In uniaxial crystals the dielectric
polarizability is anisotropic and a
purely longitudinal exciton mode
exists only in special symmetry
directions of k. We must consider
depolarization effects on the exciton
spectrum. Let P+, P n denote
polarization components normal and
parallel, respectively, to the c axis in a
uniaxial crystal; /3j_, (3\\ are the static
polarizabilities and coj_, con are the
resonance frequencies for transverse
waves. We are particularly interested
in the special case (3 n «/3%; that is,
we consider an exciton of frequency
near and neglect the contribution to
the polarizability of the oscillators at
cot|. Now

where Ex is the _L component of the
depolarization field of a polariza-tion
wave.

We find Ex from div D = 0, exactly as
in Chapter 4 we found the
demagnetization field of a magnon.




Let k be the unit vector in the direction
of k. The projection of P_| on the
wave normal i1s k ¢ Pj and the
depolarization field is

(39) E=— 41k « Pj; B+ — —
47r(k * P£) sin Ok,

where Ok is the angle between k and
the ¢ axis. Then

(40)

co_]_ dt This has two solutions:

(41) ke+P+=0;

(42) k * P+ =P<sindk;

C02 = coj_2; transverse mode; w2 =
coj_2(1 + 4x/3j_sin2 dk);

mixed mode.

We have neglected e, the contribution
to the dielectric properties from other
modes; otherwise 4w would be
replaced by 4w/(. These results are
due to J. J. Hopfield and D. G.
Thomas, Phys. Chem. Solids 12, 276
(1960).

The mixed mode is purely longitudinal
for dk = t/2 and it is asymptotically
transverse for Ok = 0 on our
assumption y3|| = 0. The photon
coupling to the longitudinal or mixed
mode therefore vanishes for Ok = t/2,
but increases sharply as Ok is varied
from this orientation. This effect has
been observed in ZnO. The
observation of an energy difference
between transverse and longitudinal
excitons is evidence that the exciton is
mobile in the sense that there is a
wavevector k associated with the
exciton.

We now discuss observations of
excitons in several crystals which have
been studied in detail.

Germanium. Both direct and indirect
excitons have been studied in




germanium. The direct excitons are
formed at k = 0 by the absorp-tion of
one photon. The direct band gap is
between the r8 valence band edge and
the r2 band; the energy of the direct
gap is 0.898 ev. The effective mass of
the spherical r2 band edge is known to
be m*/m 0. 037 from experiments on
Landau transitions. An approximate
effective hole mass can be defined as
the mass which reproduces the binding
energy of the lowest acceptor state
when calculated from the hydrogenic
relation; this mass is 0.20m. Thus the
exciton effective n.ass M is given by

The calculated ground-state exciton
energy referred to the r'2 edge is

using e = 16. The observed value is —
0.0025 ev.

The indirect excitons are excited
across the indirect gap with the
emission of a phonon of energy
0.0276 ev. The observed binding
energy of the indirect exciton is
0.002(5) ev.

Cadmium  Sulfide. The exciton
spectrum of this crystal, including fine
structure and magneto-optic effects,
has been investigated rather fully; see,
for example, J. J. Hopfield and D. G.
Thomas, Phys. Rev. 122, 35 (1961).
The crystal is hexagonal and has the
wurtzite struc-ture; the energy band
structure of wurtzite-type crystals is
discussed by R. C. Casella, Phys. Rev.
114, 1514 (1959); Phys. Rev. Letters
5, 371 (1960). It is believed that the
band edges in CdS, CdSe, and ZnO
are similar and lie at or very near to k
= 0. The energy gap in CdS is 2.53 ev.




The valence band is split at k = 0 into
three twofold degenerate states,
transforming in order of increasing
energy as r7, r7, and F§, with
separations of 0.057 and 0.016 ev,
respectively. The con-duction band
edge transforms as r7. For r7 the
energy has the form

s(k) = A{kx2 + ky2) + Bk* £ C(kx2 +
K

as in Problem 14.4. Note that the third
term is linear in Kk, but this term has
never been detected. In CdS the
conduction band edge is almost
isotropic, with m* = 0.20m. The hole
masses for the top valence band are
mt = 0.7m and my « 5m; the band
edge is ellipsoidal. The electronic g
value is —1.8 and is very nearly
isotropic; the holes

(r9) have 011 = —1.15 and g+ = 0.

There are three series of exciton lines,
each series associated with one of the
three valence bands at k = 0.

Perhaps the most interesting feature of
the exciton spectrum in CdS is its
dependence on the sense of a magnetic
field perpendicular to the ¢ axis, with
the photon wavevector LH and _Lc.
It is found that the intensities of the
exciton lines vary markedly when H is
reversed in sign, everything else
remaining unchanged. That is, the
effect depends on the sign of g X H,
where ¢ is the photon wavevector.
Such an effect is impossible for a free
electron, but the absence of a center of
symmetry in the crystal allows it to
occur. In the reference system of the
exciton wavepacket the magnetic field
appears as an electric field. The
observations are analyzed in the paper




by Hopfield and Thomas cited
previously. Only a moving exciton
could experience such an effect. It
would not occur for impurity
absorption lines.

Cuprous Oxide. This cubic crystal
exhibits beautiful hydrogenic excitons,
which have been extensively studied,
particularly by E. F. Gross and his
school.3 It is unfortunate that the
structure of the band edges are not yet
known from cyclotron resonance or
other independent studies, but some
strong inferences can be made from
the exciton results. A striking feature
of the exciton spectrum is that the
optical transition from the ground state
of the crystal to the Is exciton state is
very weak, as discussed previously.
For a discussion of excitons in ionic
crystals, see D. L. Dexter, Nuovo
cimento supplemento 7, 245-286
(1958).

PROBLEMS

1.Discuss for a direct optical transition
the dependence of the absorption
coefficient on the energy difference of
the photon energy from the threshold
energy.

2. Show that in a uniaxial crystal
with nondegenerate band edges at k =
C the exciton wave equation may be
written as

...........

3. Treat the term in y in Problem 2 as
a small perturbation. Show that to first
order in y the energies of the n = 1 and
n = 2 states are, with Et as the
effective rydberg,

4. In the magnetostark effect as




discussed above for CdS, estimate the
magnitude of the quasielectric field for
a magnetic field of 30 kilo-oersteds.

6. Show that the transition probability
for a “first forbidden” electric dipole
process creating an exciton is
proportional to \(dFn/dx)x=,0|2.

r=0




