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6 Tur hoc checked 6 h 17 1/4
CM Sorensen

Khoa Vit ly, Bai hoc bang Kansas Manhattan, Kansas

6.1 GIOI THIEU

Tir hoc va hién tuong tir 13 nhirng khai niém rat quen thudc doi
Vi tat ca chung ta, cac nha khoa hoc ciing nhu nhitng ngudi
khéng chuyén mén. Néu ching ta hoc vé& ky thuat, ching ta s&
nhan thiy rang nam cham c6 vai trd quan trong trong mé-to, co
cau truyén dong, phuong tién luu trit thong tin, chuyén d6i nang
luong dién, mach dién tir, nude tr, va cac tng dung y hoc. Néu
nghién cttu chuyén sau vé khoa hoc tir tinh, ching ta s& thay rang
nd 1a mot linh vuc phong phi va da dang. Do d6, viéc tong hop
va dién giai mét linh vuc rong 16n va da dang nhu thé trong mot
chuong la mét nhiém vu khé khan.

O day, ching tdi s& chi dé cap dén nhiing kién thic ma ching toi
thdy c6 ich va can thiét dé nghién ctu tinh chat tir cua céc hat
nano. Do d6, chuong nay khéng han la chuong trinh bay vé tur
tinh ¢ thang nano, ma chi la mot chuong mé ta nhitng kién thic
can thiét dé ching ta cd thé nghién ctu tir tinh & kich thuét nano.
Trong toan bd chuong nay, ching ta s& st dung mot s6 ngudn
kién thtrc trong ba tai liéu tham khao rat hay sau day: sach cua
Cullity, hién nay Ia tai liéu kinh dién vé linh vyc nay; chuong 2-
tir hoc trong sach vat ly trang théi ran cua Kittel, va quyén sach
tuong d6i d& hiéu cua Jiles.3 Chlng ta c6 thé dung mét trong ba
sach d6 néu mudn tim hiéu ki hon nhitng hién tuong bén dudi.




these can be consulted for more
detailed description of the
phenomena described below.

6.2 FUNDAMENTAL
CONCEPTS
6.2.1 Atomic
Magnetism
It is well known that matter is
electronic in nature; that is, all
atoms are made of positive and
negative charges (protons and
electrons) that are strongly bound
together via the electrostatic
(Coulomb) force. This force is a
consequence of the electric field,
which reaches out from a charge
across space to cause a force on a
second charge. It is also well
known that electricity and
magnetism are integrally tied
together as different aspects of the
same thing—the electromagnetic
interaction. Interestingly, there is
a break in this symmetry in that,
whereas electric fields occur
spontaneously from electronic
charges (indeed, they are each
other) there are no magnetic
“charges,”—in  other  words,
magnetic monopoles do not exist.
Because of this, the sole source of
the magnetic field is relative
motion of an electric charge and
the observer. Thus magnetism is a
result of moving charges. From
an atomic view of matter, there
are two electronic motions: the
orbital motion of the electron, and
the spin motion of the electron.
Except for some nuclear magnetic
effects, which are much smaller
and which we will not discuss,
these two electron motions are the
source of macroscopic magnetic

Origins of




phenomena in materials.
6.2.2 Magnetic Variables
Units

The magnetic field strength (or
intensity) is usually represented
by H. H will be reserved for fields
that result solely from free
currents, such as an electric
current flowing in a wire. The
magnetic moment per unit
volume of a magnetic material is
measured by M, the
magnetization (or polarization).
M results from the two atomic
motions: the orbital and spin
motion of the electron, mentioned
above. These are often viewed
macroscopically as equivalent or
effective currents. Finally, the
general case of a field due to both
free and equivalent currents is
described by the magnetic
induction, B. These three
quantities are tied together in the
field equation

B =H + 4%M [cgs] (6.1)
Thus B can result from a
combination of H and M. For
example, an electromagnet made
by winding coils of copper wire
around an iron rod and then
passing a current through the wire
has an H from this current, an M
from atomic motion of the
electrons in the iron, and a total B
that is the sum of these two as
described by Equation (6.1).

The units of H, M, and B are
fundamentally all the same, as
implied by Equation (6.1), and
depend on the system of units
being used. There are a number of
unit conventions, each with
advantages and disadvantages.

and

|3=n FdaM  [cgs] (6.1)




There are currently three systems
of units that see widespread use.
Historically, workers in magnetic
materials have used the cgs
(centimeter, gram, second) or
Gaussian system. More recently
attempts have been made to
change over to the Sl system (in
mechanics Sl implies mks—
meter, kilogram, second). There
are two Sl systems, the Kennelly
and the Sommerfeld conventions,
the latter slowly  gaining
acceptance in the magnetism
community. Table 6.1 gives the
units for the important magnetic
quantities.

Conversion factors are:

TABLE 6.1 Magnetic units. A is
ampere, cm is centimeter, m is
meter, emu is electro-magnetic
unit, B is magnetic induction, H is
magnetic field strength, M is
magnetization of a substance per
unit volume, "0 = 4n x 10-7

newton/ampere2 IS the
permeability of free space. In the
SI-Kennelly  convention  the

magnetization is I, the intensity of
the magnetization

Quantity  cgs (emu) Sl
(Sommerfeld) SI (Kennelly)

With the information in Table 6.1,
one can show:

1 emu =1 ergOe-1

=1 (erg cm3)1/2 1 Oe = 1 (erg
cm-3)1/2

Also note that in the cgs system
the magnetization M can also be
written per gram of substance.
Then one often finds the symbol a
used, viz.

l emu = lergOe '
=1 (erg em*)/~

| Oe = 1 (erg cm 3172

(6.2)

(emug ')

a=M/p




a=M/p (emu g-1) (6.2)

where p is the mass density.
Examples of magnetic fields are
those of the earth, for which B ~
0.8G=8x105T, or near a pole
of a common permanent magnet
where B ~ 1000 G, etc. Beware,
however, because usage of
magnetic units is often not careful
and units get mixed.

6.2.3 Magnetic

and Permeability
Perhaps the most common
magnetic experiment is to apply a
magnetic field to a material and
measure  the  magnetization
induced by the field. The measure
of how effective an applied field
is for inducing a magnetic dipole
iIs the susceptibility of the
material, defined as

k=M/H (6.3)

This susceptibility is unitless, as
seen by Equation (6.1). However,
it can be expressed in terms of
units if M is taken as emu cm-3
for then k has units of

Susceptibility

TABLE 6.2 Permeabilities of
some common ferromag-netic
substances.4 Permeability is a
function of applied field and
temperature. The values quoted
here are maximum values
Substance Permeability, »
Transformer steel 5 x 103
Cold-rolled steel 2 x 103
High-purity iron 920

4% Siin Fe 7 x 103

78 Permalloy 105
Supermalloy 106

K= M/H (6.3)




emu cm 3 Oe 1. For this reason, it
may Dbe thought of as the
susceptibility per unit volume.
Dividing by the density of the
material  yields the  mass
susceptibility,

1=K/P (emug-10e-1) (6.4)

or dividing by the mole weight
yields the molar susceptibility,

IM = i/mole wt (emu mol-1 Oe-
1) (6.5

A quantity closely related to the
susceptibility is the permeability »
defined by
A= B/H (6.6)

The physical content of Equation
(6.6), especially if it is rewritten
as B = ~H, is that a field H,
generated by a current, when
applied to a material of large
permeability (e.g., © of iron can
range to thousands, see Table
6.2), is enhanced by the factor of
 to create a large field B.

From Equations (6.1), (6.3), and
(6.6) it is easy to show that
N=1+4UK(6.7)

Remember that this expression
holds for the cgs system of units;
similar expressions hold for other
units systems.

6.3 MAGNETIC
MATERIALS
For most of us the term

“magnetism” conjures up visions
of pieces of iron being attracted
across a distance by magnets. The

y=ux/p (emug  Oe ') (6.4)

=
_'Jl

¥y = y/mole wt (emumol ' Oe ')

n=B/H (6.0)

(6.7)
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layman sees only iron as
magnetic; other materials are not
affected by magnets. Nothing
could be further from the truth,
however, because all materials are
affected by a magnetic field,
although most only weakly so.
The nature of the interaction with
a magnetic field allows us to

classify  (roughly)  magnetic
phenomena into three major
categories:

1. Ferromagnetism: Here the
interaction is strongly attractive
toward a magnetic pole. Iron,
cobalt, and nickel are the classic
examples of ferromagnets. A list
of some ferromagnetic (and
ferrimagnetic) materials is given
in Table 6.3.

2. Paramagnetism: Here the
interaction is weakly attractive
toward a magnetic pole. A list of
some paramagnetic materials is
given in Table 6.4.

3. Diamagnetic: Here the
interaction is weakly repulsive
from a magnetic pole. The vast
majority of  substances are
diamagnetic, including water,
Si02, wood, plastics, NacCl,
CaCO3, and most organic and
biological materials. Some
diamagnetic materials are listed in
Table 6.5.

These classifications are rough.
Below we will refine the meaning
of ferromag-netic in terms of the
coupling between adjacent atoms.
Strictly speaking, ferri- magnets,
such as magnetite (Fe304), are
not ferromagnets but are included
n the “ferromagnetic”
classification above. Another




category of weakly attractive
materials are antiferromagnets,
which  are  definitely  not
paramagnets. Extensive tables of
magnetic properties are given in
reference 4.

If the material is not itself a
magnet—if it has no permanent
magnetic polar-ization—then the
interaction occurs because the
applied field induces the material
to become a magnet, that is, it
induces a magnetization M into
the material. Then the two
magnets, one given, one induced,
interact.

For a paramagnetic substance, k
is small and positive. Typical
values fall in the range 10-3 to
10-5 at room temperature.
Because the value is positive, the
induced moment has the same
direction as the applied field.
Figure 6.1a depicts a permanent
magnet creating a field near a
paramagnetic material. The field
lines for B are away from the
north pole of the magnet; hence,
with k > 0, the induced dipole
points away from the north pole
of the magnet as well. The
paramagnetic material has been
polarized, so it is now a magnet
as well. The south pole of the
induced dipole is at the tail of the
dipole vector, the north pole is at
the head, as drawn. From
elementary magnetostatics we
know that a dipole tends to align

with the applied field, so a
nonsymmetric piece of
paramagnetic  material would

align with its long axis parallel to
the field. We also know that the




total force on a dipole in a
uniform field is zero, but the field
near a pole piece is far from
uniform, growing weaker with
distance. Thus, the attractive
force between the permanent
magnet’s north pole and the
induced magnet’s south pole will
dominate the repulsive interaction
of the permanent and induced
north poles for an overall
attraction. This scheme holds true
for a ferromagnetic material since
k > 0 again. The difference, and it
IS major, is that ferromagnetic
susceptibilities are  typically
orders of magnitude greater than
para-magnetic ones, so that the
force is much greater as well.

A diamagnetic material has k < 0,
with typical values on the order of
10 5 to 10-6. Thus, when such a
material experiences an applied
field, the induced moment is
small and opposite to the field, as
depicted in Figure 6.1b. The
induced dipole

TABLE 6.3 Ferromagnetic and
ferrimagnetic materials

Saturation Magnetization Ms, in
emu cm-3 (or emug-1)
Curie Temperature

Bohr Magnetons

Substance Temperature 0 K per
Formula Unit (°C) (K)

Compiled from references 2, 3,
and 4.

would try to rotate from this anti-
aligned state to an aligned state,
but the dipole is not connected to




the material, rather its direction is
determined by the applied field. If
the object is not symmetric, e.g., a
long cylinder, the cylinder will
align perpendicular to the field so
that the total induced moment,
which would lie across the axis of
the cylinder still antiparallel to H,
will be minimized. In this anti-
aligned state with the gradient in
the applied field, we see that the
repulsion of the nearby north
poles dominates the attraction of
the permanent magnet’s north
pole with the distant induced
south pole, to yield an overall
repulsion.

Figure 6.2 shows the magnetic
state of the elements at room
temperature. We see that most
metals are paramagnetic. Iron,
cobalt, and nickel, and below
16°C gadolinium, are
ferromagnetic. Most nonmetals
are diamagnetic.

TABLE 6.4 Magnetic molar
susceptibility of some
paramagnetic substances at room
temperature

6.3.1 Diamagnetism
Diamagnetism results from a
fundamental principle of
electromagnetism,  known  as
Lenz’s law, which states that
when a conducting loop is acted
upon by an applied magnetic field
a current is induced in the loop
that counteracts the change in the
field.

From a semiclassical, atomic
point of view, the electron orbits
are resistanceless, so the induced
current remains after the field has




been applied and is constant. The
conduction electrons of a metal,
the Fermi sea, also respond in a
resistanceless manner. This is also
true for superconductors, which
are perfectly diamagnetic (i.e., k
=-1) and hence show total
exclusion of the applied field.

The diamagnetism of atoms, ions,
and molecules can be modeled as
if the orbits of the electrons were
current  loops. The induced
moment is proportional to the
current times the area of the loop.
Current will depend on the
passage of charge, which is the
number of electrons times the
charge on the electron, e, and on
the frequency of the orbital
motion, which also depends on
the charge e. Thus one might
expect a susceptibility with
functionality going as Ze2{r2),
where r is the orbital radius.
Indeed, the simple Langevin
theory of diamagnetism predicts

k =-NZe2 <r2) (6.8)

In Equation (6.8), N is the
number of atoms per unit volume,
m is the electron mass, and c is
the speed of light.

TABLE 6.5 Magnetic
susceptibility of
diamagnetic substances
Compiled from reference 4.
Equation (6.8) tells us that large
atoms (high Z and large <r2))
have large diamagnetic
susceptibilities. It also shows no
temperature dependence, a key
para-meter for other types of
magnetism. Table 6.5 gives the
diamagnetic susceptibility for a
few selected materials.

molar
some

(6.8)




6.3.2 Paramagnetism
Paramagnetism occurs when the
atomic, ionic, or molecular
constituents have a nonzero
magnetic moment. Then an
applied field can align these
moments to create a positive
susceptibility. The diamagnetic
response is still present, but the
atomic moments have a much
greater magnitude than the
induced diamagnetic moments.
The source of atomic scale
magnetic moments is unbalanced
angular momentum of

FIGURE 6.1 A magnetic field
applied to an elongated material.
(@ When k > 0, the induced
dipole is in the same direction as
the applied field and the net force
is attractive. (b) When k < 0
(diamagnetic) the induced dipole
is opposite to the applied field
and to minimize this unfavorable
antiparallel alignment the material
rotates its axis perpendicular to
the field. The net force s
repulsive.

the electrons, either orbital or
spin. Both angular momenta yield
a magnetic moment given by

M =gMBJ

In Equation (6.9), g is the so-
called g factor. For a free
electron, g ~ 2.00. The Bohr
magneton MB is given by

FIGURE 6.2 Magnetic state of
the elements at room temperature
(T = 20°C). *Gadolinium
becomes ferromagnetic at 16°C.

where h = h/2% and h is the
Planck constant. This is the

= gugJ

(6.9)




fundamental unit of magnetism.
Note its magnitude: a
macroscopic quantity of Bohr
magnetons, say 1023, would yield
a healthy magnet; a fact which
fortunately does transpire.
Finally, Equation (6.9) contains
the angular momentum quantum
number J, which is of order unity.
For a free electron the angular
momentum is purely spin and so J
=S =1, hence

p=SPBS=Pb

Nonzero  magnetic  moments
leading to paramagnets can occur
in many materials. Spin moments
can result in atoms or molecules
with an odd number of electrons,
in transition metals with partially
filled ~-shells, and in rare earths
with partially filled f -shells.
Orbital moments also contribute
in the rare earths (hence their
large moments), but are quenched
to zero in the transition metals.
Many  other metals are
paramagnetic due to the electrons
within kT (the thermal energy) of
the top of the conduction band
(Pauli paramagnetism). There are
a few cases of compounds with an
even number of electrons that are
paramagnetic, such as molecular
oxygen.

Even a very small applied field
would readily align all the atomic
moments and create a significant
polarization if it were not for the
randomizing effect of thermal
motion. Indeed, the energy of
magnetic moment alignment in an
applied field and the thermal
energy, which causes
randomization, are the primary

=gl = jp (6.11) ‘




actors in the phenomena of
paramagnetism and
ferromagnetism. The simplest

model that uses this competition

Is the Langevin model of
paramagnetism, which gives us
our first intuition into the

importance of temperature for
magnetic properties.

6.3.2.1 The Langevin Model
of Paramagnetism

We consider N atoms each with a
magnetic moment of p. In an
applied field the moment tends to
align with the field and the energy
of interaction is
U=-pmH=—pHcos 6

where 6 is the angle between p
and H. Note that Equation (6.12)
assumes that the moment can
point in any direction relative to
H. This is only true for non-
quantum- mechanical moments.
While such moments do exist (for
example, see the descrip—tion of
superparamagnetism below), this
is definitely not true for atomic
moments, so we proceed with
caution.

The total moment of the
macroscopic  body will be
proportional to p, the number of
atoms (per unit volume) N, and
the degree of alignment. The
alignment is measured by cos 6,
and since there are many
moments, we need the average of
cos 6. Thus

M = N p<cos 6)
The average alignment <cos 6)
can be obtained from the

probability of having a given cos

= —n-H

= —pH cos () (6.12)

M = Nulcosfl) (6.13)




6. In a system in thermal
equilibrium at temperature T, the

probability is given by the
Boltzmann distribution

p(U) = e-U/KT (6.14)

In  Equation (6.14) k s

Boltzmann’s constant, k = 1.38 x
10-16 erg K-1. Then

fcos 6 e-U/KT dQ f~

<cos 6)=\e-"Tda (615)

The integration is over all solid
angles, dQ. The integration is
straightforward and one obtains
M =N pL(x) (6.16a)

L(x) = cothx - x-1 (6.16Db)

X = pH/KT (6.16¢)

Equation (6.16b) is the Langevin
function. In Equation (6.16c) the
parameter X is the ratio of
magnetic alignment energy to
thermal randomizing energy, and
hence gives emphasis to the
competition between these two.
To gain a feel for the Langevin
result we look at its properties at
small and large x. At small x,

L(x) ~x/3 (6.17)

Hence the magnetization is

M .NpH = £H (6.18)
3KT Ty
This result with its inverse

temperature dependence is known
as the Curie law, and C is the
Curie constant given by

C=N4 (-9)

pll)y=e

U/kT (6.14) .

LfET ”r!'.'z
[e " 40

| cosile

{cost)) = (6.15)

M = Nul(x) (6.16a)
L(x) =cothx —x' (6.16b)
x = uH/kT (6.16¢)

| L(x) ~ x/3 (6.17)
v~ N °H_C H 6.18)
M= T (0-18)

Nu 2

= 6.19)
I ( )




Equation (6.18) applies when KT
AN pH. For example, if p = pB =
0.927 x 10-20 erg Oe-1, and if T
~ 300 K (roughly room
temperature), x =1 when H = 1.2
X 105 Oe = 12 T. Thus, it takes
huge fields to align paramagnets
signifi-cantly at normal
temperatures. On the other hand,
if T = 4 K, then a relatively
modest field of H = 1.6 x 103 Oe
= 0.16T will give x = 1 and some
alignment.

At large x, L(x) 1, and all the
moments are aligned. This is

called the saturation
magnetization,

Ms=Np (6.20)

In Figure 6.3 L(x) is plotted
against Xx.

6.3.2.2 Quantum Effects

An atomic scale angular

momentum will be controlled by
guantum mechanics and hence
only selected, discrete values of
moment orien-tation relative to
the applied field will be allowed.
For an angular momentum J there
will be 2] + 1 possible
orientations of the moment as
describped by the azimuthal
quantum number mJ =J, J — 1,
..., — J. After this modification,
the physics of alignment in an
applied field at finite temperature
is the same, viz., the competition
between field alignment and
thermal  randomization.  The
Boltzmann distribution is still
used to calculate the average
orientation. The general result is
M = NgJ "B BJ (x)(6.21a)

M, =Ny

(6.20) ‘

=
I

NgJugh ;(x) (6.21a)

)




Where

FIGURE 6.3 The Langevin
function for classical
paramagnetism.1

and

x=gJ"BH/KT  (6.21c)

The function Bj(x) is called the
Brillouin function.

For x ~ 1, a typical situation near
room temperature, one can show
that Equa-tions (6.21) yield

MANIJ+1)g2"BH  (6.22)
3kT v7
The Curie law, M = C/T, is

regained. The effective magnetic
moment resides in the Curie
constant C and is equal to "eff =
g™j(J + 1)”B by comparison with
Equa-tions (6.18) and (6.22).

The Brillouin function has two
significant limits with J. When J
= 2, there are only two states and
it is easy to show that
M=N"tanhx (6.23)

results. When J ~ro, the Brillouin
function becomes the Langevin
function (Equation 6.16b).

Figure 6.4 shows a plot of M
versus x = @gJ*BH/KT for the
Brillouin result (Equations 6.21),
for various J, and we see that the
shape evolves somewhat as we go
from the simplest quantum
mechanical limit of two states (J
= 2) to the classical, Langevin

27+ 1 (27 4+ 1)x ] X
B,(x) = mlh( — —coth (—
: 27 27 27 27

x = glugH kT

(6.21c¢)

NJ( & Ui
. [J'r + ].L, _lilf[; l“r
3kT

M= (6.22)

M = Nutanhx




limit (J ~ ro).

FIGURE 6.4 The
function for

Brillouin
quantum

paramagnetism for various values
of J.

ki




It is with this total field that the

thermal energy “ﬁghts-

K=——0A (6.24)

|HE_; = oM (6.25)

|H“L — H + oM (6.26)

Lk




Weiss, in 1906, realized that the
spontaneous magnetization that
occurs below Tc could be used to
explain ferromagnetism. Then we

M C
¢ = =— 6.27
‘ 'r Hl'lll T { }
M C
‘I&—E—T_j{T [528}

"-.]
|
"-.]

(6.29)
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view a ferromagnet as a material
that is self-starting. However,
there must be more because if
there is only a molecular field,
every piece of iron would have a
significant dipole moment, and
this is obviously not the case. To
contend with this, Weiss proposed
that ferromagnetic materials can
partition themselves into
domains. Each domain is
saturated by its molecular field,
but the domains align in a manner
that leaves a net zero
magneti-zation. We will discuss
domains below.

A theory for the temperature
dependence of the spontaneous
magnetization can be developed
by simply substituting H = He =
aM into the equations for the
paramagnetic magnetization. The
most general approach would use
the Brillouin function. We write
(6.30)

Such an equation must be solved
numerically. One finds for T > 6
=aC, M =0, but for T <6 a
temperature dependent
spontaneous magnetization
occurs, Ms(T), which is the
solution to Equation (6.30).
Recall from Equation (6.28) that
6 = aC. Then if we define the
reduced variables m = Ms(t)/MO
and t = T/6, we can write

m = BJ (m/t)

Equation (6.31) shows that for a
given J all data for a variety of
ferromagnetic materials would lie
together if plotted with reduced
variables. This is a “law of
corresponding  states,”’  very
similar to the same law found for

M = M,B, (

m = B;(m/t)

ifjﬁtﬁ-’”j
kT

(6.30)

(6.31)




fluids near critical points. Figure
6.6 shows the numerical solutions
to (6.30) and some data for iron,
cobalt, and nickel.

Expansion of (6.30) at small m
shows that m ~(t — 1)1/2. In fact
experiment gives m ~(t — 1)fi
with the critical exponential —
0.35. As with the susceptibility
exponent above, this discrepancy
Is due to the mean field nature of
the Curie-Weiss theory. Theories

involving only local, nearest-
neighbor interactions are
successful in predicting the
correct exponents.

When Ms(T) ~ MO at low
temperature, Equation (6.30)

again fails to predict the proper
temperature dependence. In this
regime, when all the spins are
nearly aligned, the thermal energy
can excite spin waves, quantized
excitations of the atomic spins
tipped slightly away from the
perfectly aligned state, as drawn

in Figure 6.7. Then the
magnetization follows Bloch’s
law:

M(T)=MO(1 — BTb)

B is called the Bloch constant and
the Bloch exponent is b = d/2,
where d is the spatial dimension,
typically d = 3. Figure 6.8 shows
an example of Bloch’s law for

both  bulk and nanoscale
materials.5
6.3.3.2 Origins of

Ferromagnetism
Weiss molecular field theory is

very successful in
semiquantitatively describing the
onset and behavior of

ferromagnet-

|.-m T) = My(1 — BT")

(6.32)




FIGURE 6.6 Saturation
magnetization versus temperature,
both as scaled variables. Lines are
predictions of the mean field
theory for ferromagnetism using
the quantum Brillouin function
with three different /-values.
Points are data for iron, cobalt,
and nickel.1

ism. It predicts spontaneous
magnetization (i.e., does not need
an applied field) below a critical
temperature, called the Curie
temperature, and paramagnetic
beha-vior (Curie-Weiss) above.
We have seen, however, that it
misses in the details of the
temperature dependence, and the
magnitude of the molecular field
seems unrea-sonably high. This
latter aspect implies that the
origin of the interatomic coupling
is unknown. The true physical
origin of the coupling was
elucidated by Heisenberg in 1928,

following the Heitler-London
treatment of the hydrogen
molecule. Quantum mechanics
provides for an exchange

interaction, as it is now called,
between two atoms based on
symmetry, the Pauli exclusion
principle, and the coulombic
inter-action. A two-electron
system, one from each atom, can
have one of either two spin
configurations: parallel or
antiparallel signs. If the atoms are
brought near to each other, the
electron  wavefunctions  will
overlap, and if they are from the
same atomic quantum state, the
Pauli exclusion principle will




enhance the probability for the
electron wavefunction to overlap
if the spins are antiparallel and
tend to keep them apart when the
spins are parallel, for then all four
quantum numbers (three atomic,
one spin) would be the same.
This, combined  with the
coulombic interaction, means that
parallel and antiparallel spin
configurations will have different
energies.

FIGURE 6.7 Schematic drawing
of spin wave. Kittel, Introduction
to Solid State Physics, 7E,
Copyright© 1995 John Wiley &
Sons, Inc. Reprinted by
permission of John Wiley &
Sons, Inc.

Heisenberg showed that these
effects lead to an exchange
energy given by
Nex = 2JexSi ' Sj

between neighboring spins, St and
Sj. Jex is called the exchange
integral. If Jex is positive, the
lower energy configuration is that
of parallel spins, and hence
parallel magnetic moments as
required for ferromagnetism. If
Jex is negative, the antiparallel
configuration results, a situation
that leads to antiferromagnetism.
100 n k)

FIGURE 6.8 Saturation
magnetization depression relative
to its value at OK versus
temperature for different size iron
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crystallites in a matrix of MgF2.
By Bloch’s law (Equation 6.32),
this log-log plot should have a
slope of b. Reprinted with
permission from D. Zhang et al,
Phys. Rev. B, 1998, 58, 1467,
American Physical Society.

Interestingly, the most common
situation is /ex < 0, antiparallel
coupling (this happens in the
covalent bond of the hydrogen
molecule). However, fortunately
(for much of our technology!) /ex
> 0 also occurs in rare cases and
ferromagnets can result. Slater
found  empirically that a
correlation exists between the
ratio of the interatomic distance
2ra to the radius of the
incompletely filled d shell rd of
some transition metal elements
and the sign of the exchange
integral. Subsequently, Bethe was
able to use quantum mechanics to
explain this observation. The
result is called the Bethe-Slater
curve and is shown in Figure 6.9.
Unbalanced spins in the d
subshell of iron, cobalt, and
nickel are the source of their
magnetism. The Bethe- Slater
curve correctly differentiates iron,
cobalt, and nickel as having
positive /ex and hence being
ferromagnetic. Moreover, the
magnitude of /ex is in the order
ofNi-Fe- Co, which is also the
order of their Curie temperatures.
It also correctly predicts the
antiferromagnetism of chromium
and manganese, and correctly
correlates their antiferromagnetic
ordering temperatures. It also
implies that if one could




somehow change the atomic
spacings, magnetic properties
would change. Thus, alloys such
as MnBi are ferromagnetic
because the manganese atoms are
farther apart in the alloy than in
the pure metal and hence 2ra/rd
has increased, taking manganese
into the /ex > 0 regime of the
Bethe-Slater curve. These
successes have occurred despite
criticism of the Bethe calculation.
6.3.3.3 Band Theory

We next contend with the
problem of identifying the source
of magnetic moments in the first
row of transition metals, most
notably iron, cobalt, and nickel. A
first guess would be to look at the
unbalanced spins in the 3d shell
that is being filled as one
progresses across the row from
scandium to zinc. At scandium
the first electron is added to the
3d shell “below” the 4s shell that
was filled beyond argon with
potassium and calcium. After
scandium, as electrons are added,
they all go in (by Hund’s rule)
with the same spin, say spin-up,
until at chromium and manganese
five spin-up electrons reside in
the 3d shell (chromium has a
3d54s1 configuration, manganese
has 3d54s2). This excess spin
yields a spin magnetic moment of
57"B for these atoms. Progressing
now to higher atomic number, the
spin-down half of the 3d shell
fills, compensating the already
filled spin-up shell; thus iron has
a 4s23d6 configuration and a net
spin of 4. And, indeed, these
magnetic




FIGURE 6.9 The Bethe-Slater
curve. 2ra/rd is the atomic
separation divided by the radius
of the atomic d-shell; /ex is the
exchange integral and positive
values  yield  ferromagnetic
coupling, negative values Yyield
antiferromagnetic coupling.

moments are observed, with
various perturbations, in
insulating compounds of the
transition metals.

Much of this changes when the
atoms are brought together to
form a solid metal. Most notably,
the discrete atomic energy levels
broaden greatly to form electronic
bands. In the 3d transition metals,
the outermost 4s state broadens
the most, followed by the 3d
level, which also broadens
significantly. The shells closer to
the nucleus do not overlap
significantly, hence neither do
they broaden. Figure 6.10 gives a
sche-matic picture of the 4s and
3d bands and significant overlap
in energy (plotted on the vertical
axis) is seen. The density of states
per energy interval is plotted
horizontally, to the right for the 4s
bands and to the left for the 3d
band. The total area of each band
in this diagram is the total number
of possible states per atom: two
for the 4s and 10 for the 3d, a
remnant of the atomic
configuration. The extent to
which these bands are filled by
electrons depends on the number
of 3d plus 4s electrons in the
atom. The level to which the




bands are filled is the Fermi level,
and such levels are shown for the
atoms manganese through zinc.
Consider nickel, which has eight
3d electrons and two 4s electrons
in the atomic state. In the metal
these ten electrons fill up and mix
in both the 3d and 4s bands to the
same Fermi level. It is known
from the magnetic properties of
nickel that the 3d is filled to the
9.4 electron level and the 4s band
is filled to the 0.6 level.

It is at this point that the exchange
energy comes into play. We have
discussed how exchange creates
the coupling of magnetic
moments necessary for
spontaneous magnetization. But it
has another related, and very
important, role which is to create
a spin imbalance in the band.
Since parallel spins interact with a
different energy

Density of states P
FIGURE 6.10 Schematic of the
3d and 4s electron bands of the
first-row transition elements.
Fermi levels are marked for
various elements.
from antiparallel spins, the 3d
band splits into spin-up and spin-
down with different energies.
Thus the nearly filled (9.4) 3d
band of nickel is in fact a
completely filled spin-up band of
five electrons and a partially filled
spin-down band of 4.4 electrons.
The net result is 0.6 unbalanced
spin, from which a net magnetic
moment of 0.6"B results.

We can now extend this picture to
other elements in the 3d row of




the periodic table. Moving left to
cobalt removes one 3d electron
per atom, so if nickel is short 0.6
electrons, cobalt should be short
1.6. Likewise, iron and
manganese should be short 2.6
and 3.6, respectively, and in all
cases their spins are unbalanced.
Moving to the right to copper
adds an electron and overfills the
3d band by 0.4 electrons. Thus,
copper is not ferromagnetic
because the 3d band is full, hence
there is no spin imbalance. The
magnetic moments thus should be
short by values times "B, the
Bohr magneton. This linear
prediction is plotted in Figure
6.11 along with the measured
moments; reasonable agreement
is seen, thus substantiating the
band theory.

Slater used these ideas to explain
the ferromagnetism of simple
alloys. For example, what is the
magnetic  moment of an
equimolar mixture of nickel and
copper? Since nickel has a 3d
band underfilled by 0.6 electrons
and copper has a 3d band
overfilled by 0.4 electrons, this
equimolar mixture should have a
3d band filling of (0.5)(+0.6) +
(0.5)(—0.4) = +0.1 and hence be
ferromagnetic with a moment of
0.1 "~B per atom. Similar
arguments can be made with
success for other combinations of
3d elements. This theory is useful
not only for alloys but for the
general concept that if one can
manipulate the d-band of a
transition  metal, one can
manipulate its magnetism.




FIGURE 6.11 Band theory
prediction (line) for the number of
Bohr magnetons per atom for a
number of the 3d transition
metals. A value less than or equal
to zero implies the metal is not
ferromagnetic. Circles are data.

6,3,3,4 Antiferromagnetism
In an antiferromagnet, exchange
coupling exists between
neighboring moments that causes
the moments to align in an
antiparallel fashion: the exact
opposite of a ferromagnet. Thus,
in terms of the Heisenburg
hamiltonian of Equation (6.33),
the exchange integral Jex is
negative.  This  anti-parallel
alignment causes the system to
have a small, positive
susceptibility, because an applied
field tends to align the spins and
this induced alignment is larger
than the diamagnetism of the
electron orbitals. Similar to
ferromagnets, the  exchange
energy can be defeated at high
temperature and then the system
becomes para-magnetic.

The behavior of the
antiferromagnetic susceptibility is
depicted in Figure 6.5 and in
more detail in Figure 6.12. For

temperatures greater than a
critical temperature, the
susceptibility follows a

paramagnetic Curie-Weiss law
with a negative 6. Thus,
ferromagnets and
antiferromagnets are akin at high
T following Curie-Weiss,

differing only in the sign of 6.




This kinship and difference are a
direct consequence of the same
Heisenburg  hamiltonian  but
differing signs in the exchange
integral. Below the critical
temperature TN, the Neel
temperature, the system orders.

Thereafter, the susceptibility
decreases with decreasing
temperature because the tendency
for antiparallel alignment
Increases. Many
antiferromagnetic  systems are

known, usually ionic compounds
such as metallic oxides, sulfides,
chlorides, and so on. Both
chromium and manganese are
antiferromagnetic, although their
suscept-ibilities do not obey the
Curie-Weiss law. See Table 6.6
for other examples.

A microscopic view of an
antiferromagnet is depicted in
Figure 6.13. There we see two
sublattices, usually called A and
B. A molecular field theory for
anti-ferromagnetism
incorporating only the antiparallel
interaction of the A and B
TABLE 6.6 Antiferromagnetic
substances

Substance  Paramagnetic lon
Lattice" Transition
Temperature TN (K) Curie-
Weiss

FIGURE 6.13 Schematic
depiction of spin arrangements in
a ferromagnet, an
antiferro-magnet, and a

ferrimagnet.

sublattices predicts that 6/TN = 1.
Table 6.6 shows that this is rarely
the case and the reason is due to
interactions within each




sublattice.

The exchange interaction in
antiferromagnetic ionic  solids
occurs indirectly via a mechanism
called superexchange. The nearest
neighbors to the metallic ions,
which  carry the  magnetic
moment, are anions such as 02~,
S2~ and CIl. Thus, for two
metallic ions to communicate
their spin states to each other they
must work through an anion. This
occurs by spin polarizing the
outer electron orbitals of the
anion so the spin information can
be conveyed.

Antiferromagnets can be quite
complex and do not always
display the canonical behavior of
Figure 6.12. This is especially
true for nonionic systems such as
metallic chromium and
manganese and alloy systems. In
such cases neutron diffraction,
which can sense spin alignments
at the atomic level, is necessary to

positively identify an
antiferromagnet.
6.3.3.S Ferrimagnetism

Ferrimagnets are similar to

antiferromagnets in that two
sublattices exist that couple
through a superexchange
mechanism  to  create  an

antiparallel alignment. However,
unlike an antiferromagnet, the
magnetic moments on the ions of
the sublattices are not equal and
hence they do not cancel; rather, a
finite difference remains to leave
a net magnetization.  This
spontaneous magneti-zation is
defeated by the thermal energy
above a critical temperature




called the Curie temperature, and
then the system is paramagnetic.
The behavior of the susceptibility
of a ferrimagnetic is depicted in
Figure 6.14. At high temperatures
Curie-Weiss behavior is seen with
k 1 linear with T. As for an
antiferromagnet,  this linear
behavior extrapolates to a
negative 6. Near the Curie
temperature, k 1 wversus T is
curved.

A microscopic view of a
ferrimagnet is depicted in Figure
6.13.

A large number of ferrimagnets
are known; a major class of which
are the ferrites. There are two
types of ferrites: cubic and
hexagonal. Cubic ferrites have the
general

FIGURE 6.14 Curie plot, inverse
susceptibility versus temperature,
for a ferrimagnet (solid line). Tc
is the Curie temperature below
which  the system has a
spontaneous magnetization.
Dashed line is the Curie-Weiss
law.

formula MOFe203, where M is a
divalent metal cation such as Mn,
Ni, Fe, Co, and Mg. One of these
Is the oldest known magnetic
material, magnetite or loadstone
which IS FeOFe203 or
equivalently Fe304. Hexagonal
ferrites have the general formula
MOG6Fe203. Perhaps the best-
known example is barium ferrite,
BaO6Fe203.

As the general formulas imply,
the ferrites have two sublattices.




In the cubic ferrites the metallic
jons in the A sublattice are
tetrahedrally  coordinated by
oxygen atoms, whereas the ions
in the B sublattice are
octahedrally coordinated. Such a
structure is called a spinel, and
they are quite complex because
there are 56 atoms in the unit cell.
Moreover, the ions in the two
sublattices  can interchange
depending on synthesis conditions
or thermal treatment.
Ferrimagnets are technologically
useful because they have a
spontaneous magnetization and
they are insulators as well.

Other classes of ferrimagnetic
materials include the garnets and
some alloys.

6.4 MAGNETIC
PHENOMENA
FERROMAGNETIC
MATERIALS

6.4.1 Magnetic Anisotropy
In many situations the
susceptibility of a material will
depend on the direction in which
it is measured. Such a situation is
called magnetic anisotropy. When
magnetic anisotropy exists, the
total  magnetization of a
ferromagnet Ms will prefer to lie
along a special direction called
the easy axis. The energy
associated with this alignment is
called the anisotropy energy and
in its lowest order form is given
by

Ea=Ksin2e (6.34)

where e is the angle between Ms
and the easy axis. K is the

E, = Ksin" 0 (6.34)




anisotropy constant.

There are several causes from
which anisotropy may occur,
including those induced by stress
and prior mechanical handling of
the material. Here we will discuss
two important and common
sources of anisotropy, which are
magneto- crystalline anisotropy
and shape anisotropy.

6.4.1.1 Magnetocrystalline
Anisotropy Only
magnetocrystalline anisotropy, or
simply crystal anisotropy, is
intrinsic to the material; all other
anisotropies are induced. In
crystal anisotropy, the ease of

obtaining saturation
magnetization is different for
different crystallographic

directions. An example is a single
crystal of iron for which Ms is
most easily obtained in the [100]
direction, then less easy for the
[110] direction, and most difficult
for the [111] directions. These
directions and magnetization
curves for iron are given in Figure
6.15. The [100] direction is called
the easy direction, or easy axis,
and because the other two
directions have an overall smaller
susceptibility, the easy axis is the
direction of spontaneous
magnetization when below Tc.
Both iron and nickel are cubic
and have three different axes,
whereas

FIGURE 6.15 Magnetization
curves for single crystals of iron,
cobalt, and nickel along different
directions. Kittel, Introduction to
Solid  State  Physics, 7E.




Copyright© 1995, John Wiley &
Sons, Inc. Reprinted by
permission of John Wiley &
Sons, Inc.

cobalt is hexagonal with a single
easy axis perpendicular to the
hexagonal symmetry (the c-axis).
Figure 6.15 also gives
magnetization curves for cobalt
and nickel.

One may now imagine a situation
in  which the system has
spontaneous magnetization along
the easy axis but a field is applied
in another direction. Redirection
of the magnetization to be aligned
with the applied field requires
energy (through the change in M
H), hence the crystal anisotropy
must imply a crystal anisotropy
energy given by Equation (6.34)
for a uniaxial material. This
energy is an intrinsic property of
the material and is parametrized,
to lowest order, by the anisotropy
constant K = K1 which has units
of erg per cm3 or gram of
material. Roughly speaking K1 is
the energy necessary to redirect
the magnetization. Table 6.7
gives values for a number of
materials. For a uniaxial material
with only K1, one can show (see
below) that the field necessary to
rotate the magnetization 90° away
from the easy axis is

H = 2K1 /Ms

Similar expressions with H ~ K1
/Ms apply to cubic systems. As an
example, consider uniaxial cobalt
with Ms from Table 6.3 and K1
from Table 6.7, one

TABLE 6.7 Anisotropy constants,

H =2K,/M, (6.35)




K1

Compiled from references 1 and
3.

calculates H = 6300 Oe to
saturate 90° from the easy axis. In
fact, the experimental value is —
12,000 Oe because in cobalt a
higher order anisotropy constant,
K2, makes a contribution to this
recalcitrance.

The physical origin of the
magnetocrystalline anisotropy is
the coupling of the electron spins,
which  carry the  magnetic
moment, to the electronic orbit,
which in turn is coupled to the
lattice. Recall it was the strong
coupling of the orbit to the lattice
via the crystal field that quenched
the orbital angular momentum.
6.4.1.2 Shape Anisotropy It
IS easier to induce a
magnetization along a long
direction of a nonspherical piece
of material than along a short
direction. This is so because the
demagnetizing field is less in the
long direction, because the
induced poles at the surface are
farther apart. Thus, a smaller
applied field will negate the
internal, demagnetizing field. For
a prolate spheroid with major axis
c greater than the other two and
equal axes of length a, the shape
anisotropy constant is

Ks = 2(Na - Nc)M2 (6.36)
where Na and Nc are
demagnetization  factors.  For

spheres, Na = Nc because a = c. It
can be shown that Nc + 2Na =
4re; then in the limit ¢ » a, that is,
a long rod, Ks = 2tcM2 . Thus a
long rod of iron with Ms = 1714

! ,
K, =5 (N, — NoM? (6.36)




emu cm-3 would have a shape
anisotropy constant of Ks = 1.85
x 107 erg cm-3. This s
significantly greater than the
crystal anisotropy, see Table 6.7,
SO we see that shape anisotropy
can be wvery important for
nonspherical materials.

6.4.2 Magnetic Domains

An ordinary piece of iron at room

temperature is well below its
Curie temperature, thus the
exchange energy can align

neighboring atomic moments so
that they may act cooperatively to
yield a  macroscopic total
moment. How is it then that this
piece of iron in the absence of an
applied field has no magnetic
moment? The resolution to this
paradox was given by Weiss in
1906, who proposed that a
macroscopic magnetic material
will break up into domains that
align themselves in such a manner
as to minimize the total effective
moment of the material.

A magnetic field contains energy
proportional to the field squared
and its volume extent. Thus the
magnetostatic energy of a single
domain of parallel spins can be
decreased by breaking it into
smaller,  oppositely  aligned
domains. This beneficial decrease
in energy would continue with
further breaking into more and yet
smaller domains were it not for
another energy that increases with
declining size. This energy is the
exchange energy at the boundary

between  oppositely  aligned
domains  which, by the
ferromagnetic nature of the




coupling,  fights the
antialignment.

This competition between the
magnetostatic energy and what
we will call the domain wall
limits the break-up of the material
to domains of a finite size. This
process is represented in Figure

6.16.

against

Hexagonal Cubic

FIGURE 6.16 Domain creation
and the associated magnetostatic
field for both hexagonal and cubic
crystals. Note how the external
field decreases, and hence the
magnetostatic energy decreases,
as the system breaks into
domains.

The boundary between domains,
the domain wall, is a result of
another competition of energies.
The exchange interaction between
two antiparallel spins in a
ferromagnet is so unfavorable that
the material tends to develop a
wall of finite thickness, so that the
180°  difference in  spin
alignments between domains can
be shared by many spins as
depicted in Figure 6.17, and
hence a thick wall is favored.
However, only the two
antiparallel spins are along the
material’s easy axis, so that those
in the finite thickness wall are
tipped away from the easy axis.
This gives rise to the
magnetocrystalline anisotropy
energy, which is not favorable
and hence tends to minimize the
thickness of the wall. This
competition leads to an optimal

~ VkT,./Ka (6.37)
I
y =~ VkT.K/a (6.38)




wall thickness given
approximately by

I — 5] kTc/Ka (6.37)
with a surface energy of

y — 5] kTcK /a

FIGURE 6.17 Depiction of the
spin orientation rotation through
the domain (Bloch) wall. Kittel,
Introduction to Solid State
Physics 7E. Copyright© 1995
John Wiley & Sons, Inc.
Reprinted by permission of John
Wiley & Sons, Inc.

where a is the lattice spacing.
Typical values are domain walls
of a few hundred angstroms thick
with energy on the order of 1 erg
cm-2.

Domains can be observed via a
number of techniques including
the Bitter method, which involves
treating the surface of the
magnetic material with colloidal
Fe304, Lorentz microscopy with a
transmission electron microscope,
and optical polarization methods
using either the Kerr or Faraday
effects.1

6.4.3 Hysteresis

When a ferromagnetic material is
magnetized by an increasing
applied field and then the field is
decreased, the magnetization does

not follow the initial
magnetization curve obtained
during the increase.  This

irreversibility is called hysteresis.
An example of a full or major
(ie., M is taken to near Ms)
hysteresis curve (or loop) is given
in Figure 6.18. At extremely high
applied fields, the magnetization




approaches the saturation
magnetization, Ms. Then if the
field is decreased to zero, the M
versus H curve does not follow
the initial curve but instead lags
behind until, when H = 0 again, a
remanant magnetization remains,
the remanence Mr. If the field is
now applied in the reverse
direction (a negative field), M is
forced to zero at a field
magnitude called the coercivity,
Hc. Increasing this negative field
still further forces the
magnetization to saturation in the
negative direction. Symmetric
behavior of this hysteresis curve
Is obtained as H is varied widely
between large positive and
negative values. One could say
that hysteresis is due to internal
friction. Hence the area inside the
loop is the magnetic energy that is
dissipated while circling the loop.
M

FIGURE 6.18 A full-loop
hysteresis curve. Ms is the
saturation magnetization, Mr is
the magnetization remanence (at
H = 0), and Hc is the coercivity.

Cardinal  points along the
hysteresis curve are Ms, Mr, and
Hc. Permanent magnets used in
motors, generators, loudspeakers,
and  “refrigerator = magnets’’
require large Ms and Mr. It is also
desirable that permanent magnets
not be easily demagnetized by
unexpected fields, hence a large
coercivity is good as well.
Materials with Hc > 100 Oe are
called hard magnets. The




combination of large Mr and Hc
can be parametrized by the energy
product, which is the maximum
value of M « H in the second
(demagnetizing) quadrant of the
hysteresis curve.

Soft magnetic materials are those
with small Hc, typically Hc < 10
Oe. (The boundary between hard
and soft is somewhat arbitrary
and indefinite). Soft materials are
needed for transformer cores
because in AC applications the
hysteresis loop is circled 60 times
a second and, since the area of the
loop represents dissipated energy,
this energy is lost with every
cycle. Other applications for soft
materials are in electronic
circuits.

The initial magnetization curve
starting from the origin at (H, M)
= (0, 0) has a number of
interesting features shown in
Figure 6.19. Overall, the curve
may be divided into two regimes.
A schematic representation of the
magnetization process is shown in
Figure 6.20. Initially, when H = 0,
Figure 6.20 shows a
ferromagnetic sample with two
domains each with the saturation
magnetization along the easy axes
but in opposite direction so that in
total M = 0. As a finite field is
applied, at some small angle
relative to the easy axis, the
domain less aligned with the field
dimin-ishes in favor of the one
more aligned via domain wall
motion to the right. This process
causes the magnetization to
increase in a parabolic manner
concave upward, as shown in




Figure 6.19. This continues until
the sample is one domain. Further
increase of the component of Ms
along the direction of the applied
field H requires

FIGURE 6.19 Initial
magnetization curve showing
regions of domain wall motion
and the Barkhausen effect and
magnetization rotation.

rotation of the Ms vector away
from the easy axis. Thus at high
fields, this curve bends over to
yield a knee in the curve also
shown in Figure 6.19.

Detailed description of the low-
field behavior of the initial
magnetization is given by the
Rayleigh law, which describes the
permeability p as

p=p0+vH (6.39)

In Equation (6.39), p0 and v are
the Rayleigh constants of the
material. These constants range
widely, from 30 to 105 for p0 and
from 0.5 to 1.2 x 107 for v, and
depend on the  material,
temperature, and degree of cold
work. Since B = pH,
B=pOH+VvH2 (6.40)

hence the parabolic nature of M
versus H at low H.

In the regime of domain wall
motion due to changing H, the
magnetization is found to change
not continuously but rather in a
series of very small jumps. This is
called the Barkhausen effect. A
magnified view of the M versus H
curve shows M varying like a
random staircase (Figure 6.19).
This Barkhausen effect is due to

| = ng+ i (6.39)

|3 = u,H + vH* (6.40)




the domain walls sticking at
inclusions as they attempt to
move with changing H.

At large fields, past the knee in
the M versus H curve when M is
rotating against the anisotropy,
the behavior of M can be well
described by the law of approach
to saturation:

M(H) = Ms(1 - a/H) (6.41)
This can be useful for
experimental determination of Ms
in materials that are hard to
saturate since extrapolation of M
versus H-1 is linear and at H-1 ~ 0
the extra-polation is Ms.

6.5 SMALL-PARTICLE
MAGNETISM
The  magnetism of small

ferromagnetic particles (e.g., 1 or
less) is dominated by two key
features:

. There is a size limit below
which the specimen can no longer
gain a  favorable  energy
configuration by breaking up into
domains, hence it remains with
one domain.

. The thermal energy can,
with small enough size, decouple
the magnetization from the
particle itself to give rise to the
phenomenon of
superparamagnetism.

These two key features are
represented by two key sizes (or
length scales), the single domain
size and the superparamagnetic
size, each of which is described
below.

6.5.1 Single-domain Particles
We saw above how the
magnetostatic  energy of a
ferromagnet could be decreased

MH)=M(l —a/H) (6.41)




by restructuring the material into
domains. There is a limit to this
because formation of domains
costs energy due to domain wall
formation. Thus in a large body
there could be a minimum domain
size below which the energy cost
of domain formation exceeds the

benefits from decreasing the
magnetostatic ~ energy.  This
further implies that a single

particle of size comparable to the
minimum domain size would not
break up into domains.

This scenario does indeed occur
because  of the  different
functionalities with size of the
two competing energies. For a
particle of size D (diameter) the
magnetostatic energy IS
proportional to Ms2D3 because
(1) the energy density in the field
goes as B2 hence Ms2, and (2)
the total energy is the energy
density times a volume, hence the
D3  proportionality.  Domain
formation requires creation of
walls, which are an area. Hence if
y is the domain wall energy per
unit area, we expect a yD2
functionality for the total domain
wall energy. Now consider large
D, then the D3 term of the
magnetostatic energy dominates,
so to alleviate this the smaller D2
term of wall formation concedes
and domains form. However, at
small D, the D2 term will
dominate and wall formation will
be too costly and the particle will
not break into domains. The
critical size, or single domain size
Ds, below which a particle will
not form domains, is where these

D, ~ v/ M? (6.42)




two energies are equal. If we
ignore proportionality constants,
this implies yD* — Ms2D3 to
yield

Ds - y/Ms2 (6.42)

This  result  (essentially a
dimensional analysis) IS
surprisingly accurate (good to an
order of magnitude). Typical
values for Ds range from 10 to
100 nm, as shown in Table 6.8,6
with elongated particles tending
to have large Ds.

6.5.2 Coercivity of  Single-
domain Particles

Magnetization reversal in single-
domain particles must occur via
spin rotation since there are no
domain walls to move. Because
of this, single-domain particles
have a larger coercivity compared
to multidomain systems because,
generally speaking, it is harder to
rotate the magnetization than to
move a domain wall.

Most simply, magnetization can
rotate by coherent motion of the
atomic spins, but other motions—
fanning and curling—can occur.
We consider each below.

6.5.2.1 Coherent Rotation of
the Magnetization If the spins
move coherently together, then
they can be  represented
collectively by Ms. The response
of Ms to an applied field is
hindered by the anisotropy
(crystalline, shape, stress, or
whatever) and for coherent
rotation was first considered by
Stoner and Wolfarth. The lowest-
order and simplest term in the
anisotropy energy is given by
Equation (6.34),

E, = Ksin® 0
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Ea=Ksin2 d (6.34)
TABLE 6.8 Estimated single-
domain size for spherical particles

The applied field supplies a
potential energy of

Ef=-Ms<H (6.43)

The equilibrium direction of Ms
is where the total energy, Etot =
Ea + Ef has a minimum. To find
this, one differentiates and sets
dEtot/d6 = 0.

Consider the situation in which
the applied field is perpendicular
to the easy axis. Then the field
alignment energy is — MsH sin 6
and a minimum in Etot is found at
sin 6 = MsH/2K. Thus the
component of Ms parallel to the
applied field, Ms sin 6, s
proportional to H. Since sin 6 < 1,
this component saturates to Ms
when

H = 2K /Ms (6.44)

M versus H for this case is shown
in Figure 6.21.

Now consider when H is applied
antiparallel to Ms, which is along
the easy axis, in an attempt to
reverse the direction of Ms. In
this case H applies no torque and
so Ms is not even slightly rotated,
so M = Ms remains. However,
with increasing H, the magnetic
energy for reversal, MsH,
eventually becomes great enough
that the minimum in the total
energy shifts from the original Ms
antiparallel to H to Ms parallel to
H at H = 2K/Ms. The system
makes this jump and this leads to

E;=-M, -H (6.43)

H = 2K/ M, (6.44)




a square hysteresis curve, also

shown in Figure 6.21, with
coercivity given by Equation
(6.44).

So far we have only considered
the situations where the applied
field is  perpendicular  or
antiparallel to Ms along the easy
axis. Other initial orientations can
be attacked in the same manner,
viz., minimization of the total
energy. One finds that the two
cases we have considered
represent extremes of the possible
hysteresis curves, totally closed
(no hysteresis) and totally open
(square). Other orientations

FIGURE 6.21 Hysteresis loops
for applied fields perpendicular +
and parallel || to the easy axis.
FIGURE 6.22 Hysteresis loops
for field applied to an ensemble
of uniaxial, single-domain
particles with random easy axes.

yield hysteresis curves between
these limits. Very often when
dealing with particles, the easy
axes are randomly oriented. Then
a hysteresis curve results that is
an average over all orientation.
This average is shown in Figure
6.22.

We have not yet considered the
source of the anisotropy K. It
could occur due to crystalline
anisotropy, shape, stress, or, in

small  particles, to surface
anisotropy. Table 6.9 contains
calculated coercivities Hc =

2K/Ms for iron due to the shape
anisotropy. There we see a typical
result that for even modest shape




ratios, c/a, the shape anisotropy
can be very large. This can be
shown to be true for stress
aniso-tropy as well. Thus for
particles, shape can dominate the
coercivity.

TABLE 6.9 Calculated shape
anisotropies (Equation 6.36) and
coercivities (Equation 6.44) (easy
axis aligned with field) for single-
domain iron particles (Ms = 1714
emu cm-3)

6.5.2.2 Fanning
Magnetization reversal by the
fanning mechanism is relevant in
chains of particles or highly
elongated particles. In a chain the
Ms vector of each particle
interacts with its neighbors via the
magnetic  dipolar interaction.
Thus the dipoles line up, north to
south, and like to remain in
alignment, hence causing an
anisotropy even if no others exist.
This has been called an
interaction anisotropy. An applied
field in the opposite direction
tends to reorient these dipoles, but
the re-orientation may occur
either coherently as depicted in
Figure 6.23 or incoherently also
depicted in Figure 6.23. The
incoherent realignment is called
fanning.

Fanning reversal leads to a square
hysteresis loop. The Hc is one-
third as large as for a coherent
reversal and can be calculated to
be

Hc (fanning) = n'Ms/6

Equation (6.45) works fairly well
for some real systems, even in
situations where the
approximation of a chain of

H (fanning) = nM_ /6 (6.45)




pointlike particles used to derive
(6.45) is poor, for example, in
highly elongated particles.

6.5.2.S Curling To visualize
magnetization reversal by curling,
place the initial magnetization
along positive z-axis and imagine
each atomic spin rather than the
total Ms. Next apply a field H
along the negative z-axis in an
attempt to reverse the total Ms.
Now consider an xj plane slice of
this, depicted in Figure 6.24. As
the total Ms turns to reverse, the
atomic spins could either stay
parallel so that their Xj
components are  equal—this
would be coherent rotation as in
Figure 6.24a—or they could
rotate away from the z-axis with
different xj components. If these
Xj components are always
perpendicular to a radius vector in
the xj plane as in Figure 6.23Db,
this is called curling.

For an infinitely long particle, the
energy barrier to reversal via
curling is entirely exchange. The
logic to this can be seen in Figure
6.24b, which shows how the
atomic spins are not parallel, so
that exchange energy is involved,
and are parallel to the surface, so
that there are no poles on the
surface, hence there is no
magnetostatic

FIGURE 6.23 Schematics of
coherent and fanning rotation of
magnetization in particles,
initially upward, with an applied
field downward.

energy. For finite lengths, the
magnetostatic energy becomes
important as well. Curling has a




size dependency because smaller
particles force the average angle
between adjacent atomic spins to
be greater, hence the exchange is
more effective in resisting the
reversal. It is for this reason that
small particles reverse coherently,
whereas large particles use
curling. For iron this crossover
occurs at roughly 15 nm.

6.5.3 Superparamagnetism
Below the Curie temperature of a
ferromagnet or ferrimagnet, all
the spins are coupled together and
so cooperate to yield a large total
moment. This moment is bound
rigidly to the particle by one or
more of the variety of
anisotropies that we have
discussed, and the energy of this
bond is KV, where V is the
volume of the particle. With
decreasing particle size, KV
decreases until the thermal energy
KT can disrupt the bonding of the
total moment to the particle. Then
this moment is free to move and
respond to an applied field
independent of the particle. This
moment is the moment of the
particle and is equal to pp = Ms
V. It can be quite large, thousands
of Bohr magnetons. An applied
field would tend to align this
giant (or super) moment, but kKT
would fight the alignment just as
it does in a paramagnet. Thus, this
phenomenon IS called
superparamagnetism.

If the anisotropy is zero or very
weak, one would expect that the
total moment pp = Ms V could
point in any direction, hence the
Langevin function of Equation




(6.16) would apply. If K is
significantly greater than zero, p
could appoint in either of the two
directions along the easy axis and
then the two-state Brillouin
function would apply (Equation
6.23). Both of these, however, are
an approximation to M

Versus H for a real
superparamagnet  because the
system of particles is no doubt
polydisperse, so that there is a
distribution of *p values, and the
particles would most likely have
random orientation, hence
random easy axes. Despite this
lack of a precise qualitative
description of M versus H, two
key qualities remain for a
superparamagnetic system: (1)
lack of hysteresis, and (2) data of
different temperatures
superimpose onto a universal
curve of M versus H/T. Both
these features are illustrated in
Figure 6.25.

The phenomenon of
superparamagnetism is, in fact,
timescale-dependent due to the
stochastic nature of the thermal
energy. The anisotropy energy KF
represents an energy barrier to the
total spin reorientation; hence the
probability for jumping this
barrier is proportional to the
Boltzmann factor exp(-KF/AT).
This can be made quantitative by
introducing an attempt timescale
TO, which describes the timescale
over which ~p attempts to jump
the KF barrier. Then the timescale
for a successful jump is

t =10 e-KF/AT  (6.46)

The attempt timescale is about
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10-9 s. The typical experiment
with a magnetometer takes 10 to
100 s; and if Ms reverses at times
shorter than the experimental
time- scales, the system appears
superparamagnetic. Using t ~ 100
s and t0 = 10-9 s, one obtains
from (6.46), for the critical
volume,

Fsp=25AT/K  (6.47)

A particle with volume smaller
than this acts
superparamagnetically on the 100
s experimental timescale. Typical
superparamagnetic  sizes  for
spherical ~ (magneto-crystalline
anisotropy only) iron and cobalt
particles are 16 and 7.6 nm,
respectively, for T = 300 K.

FIGURE 6.25 Magnetization for
very small, ~ 0.6 nm, cobalt
particles. (a) Data are plotted
versus applied field H; (b) the
same data plotted versus H/T. The
collapse of the data to a single
curve in (b) indicates
superparamagnetism. J P Chen, C
M Sorenson, K J Klabunde and G
C Hadjipanayis. In:

Mafen'a/s, edited by G C
Hadjipanayis and R W Siegel,
Kluwer Dordrecht, 1994, with
kind permission from Kluwer
Academic Publishers.

Equation (6.47) can be rearranged
to yield

Th = KV/25k

Th is called the blocking
temperature; below TB the free
movement of pp = Ms V s
blocked by the anisotropy; above
TB, KT kicks the moment loose so

= 25kT /K (6.47)




that the  system
superparamagnetic.
We have seen above, when
discussing single-domain particle
hysteresis, that an applied field
can modify the anisotropy energy
barrier. One then finds that for the
experimental timescale of 100 s
superparamagnetism begins when
HMs\

25kT =KV|1-]

Solving this for T, a new, and
lower at finite H, Dblocking
temperature TB can be calculated.
Essentially the applied field is
lowering the KV barrier so that
super-paramagnetism begins at a
lower T. If one solves for H, one
obtains the coercivity for small
single-domain particles in the size
regime immediately above the
super- paramagnetic size:

Recall that 2K/Ms is the
coercivity without the help of
thermal activation. Since Vp =
25kT/K, and V ~ D3, one finds
On the other hand, if Equation
(6.48) is used with (6.50), one
finds

This temperature functionality is
illustrated in Figure 6.26.

The importance of the timescale

appears

dependency of
superparamagnetism is  well
illustrated by Mossbauer
experiments on magnetic
particles. If the system of
parti-cles is ferromagnetic, a

sextet of Mossbauer lines is
observed, whereas if the system is
superparamagnetic, a doublet is

observed. The gamma-ray
interaction of the
Diameter: m, 44A; °, 56A; A,

(6.49)
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Mossbauer experiment works on
a very quick timescale, on the
order of 10-7 s. Thus by Equation
(6.46) one expects

Tbh (Mossbauer) "55

TB (Magnetometer)

Dp (Magnetometer)
(6.54)

The blocking temperature can be
easily measured in the laboratory
with a magnetometer. With TB,
one can then infer values for the
particle size, anisotropy, or
saturation magnetization through
Equation (6.48). The procedure is
to cool the sample under zero
applied field, so-called zero-field
cooling (ZFC), to a temperature
well below the suspected TB.
Then apply a small field of ~ 100
Oe. If T < TB, the individual
particle’s moments are bound to
the particles, point in random
directions, and will not be very
susceptible, so the induced
magnetization will be small. The
system is then warmed at a
uniform dT/dt. As T approaches
TB from below, kT will begin to
loosen up the moments from the
particles and the induced M will
rise. At Tb, the moments are
unblocked and hence are free to
align with the applied field to
yield a large total M. As T
increases above TB, M falls via
the Curie law, M ~ T-1 because
the system IS a

Tz(Mossbauer)

I';(Magnetometer)

Dp(Mossbauer)

Dp(Magnetometer)

~ 5.5

~ 0.6

(6.54)




(super)paramagnet. Thus a peak
occurs at TB. An example of this
Is given in Figure 6.27. Another
example is given in Figure 6.28,
which shows that TB is modified
when the particles interact via the
magnetic dipole interaction.

The data in Figure 6.27 are for
cobalt particles synthesized in our
laboratory. Their diameters were
measured with a transmission
electron microscope. The total
moment ~p was determined by
fits to the Langevin function for T
> TB, and the effective anisotropy
and saturation magnetization were
determined from all these with
Equation (6.48). The results are
shown in Table 6.10.

6.5.4 The Coercivity of Small
Particles

We can pull together much of the
discussion above into Figure 6.29
which gives a schematic of the
coercivity as a function of particle
size. At large size the particles

have many domains; thus,
magnetization reversal IS
dominated by domain wall
motion, which is relatively easy,
hence the coercivity is low.
However, as particle size

decreases, the coercivity is found
empirically to follow

FIGURE 6.27 Magnetization
versus temperature for small
cobalt particles. The particles
were zero-field cooled and then
warmed under an applied field of
100 Oe. Peaks in the data curves
indicate the blocking
temperatures. Lines are high-T
fits to the Langevin function.
Used with permission from J.




Mater. Res., 14, 1542, 1999,
Materials Research Society.
FIGURE 6.28 As in Figure 6.26,
but when the particles are not
diluted, the blocking temperature
appears higher due to interparticle
magnetic dipole interaction. Used
with permission from J. Mater.
Res., 14, 1542, 1999, Materials
Research Society.

until the single-domain size is
reached. Equation (6.55) is not
well understood theoretically. The
largest coercivities occur at the
single-domain size. Below this,
Hc falls off due to thermal
activation over the anisotropy
barriers, leading to Equation
(6.52) and superparamagnetism at
the superparamagnetic size for
which Hc = 0.

The behavior represented in
Figure 6.29 is shown for a real
system in Figure 6.30. The system
IS iron encapsulated in
magnesium prepared in our
laboratory.5 For T > 77 K the
coercivity rises from zero at D <
4nm, the superparamagnetic
regime, and peaks near D = 20
nm. This peak size is in
reasonable accord with the theo-
TABLE 6.10 Size-dependent
magnetic properties of cobalt
nanoparticles

FIGURE 6.29 Particle coercivity
versus size (~ diameter). Dsp is
the superparamagnetic size; Ds is
the single-domain size.

retical prediction for the single
domain size, Ds ~ 14 nm, given in
Table 6.8. For yet larger sizes, Hc
falls and the overall shape of Hc
versus D is the same as expected




from Figure 6.29. Note that for T
= 10 K the particles with D ~ 3 to
5 nm that were
superparamagnetic at 77 K no
longer are, indicating a blocking
temperature for these sizes
between 10 and 77 K.

The properties of ultrafine or
nanoscale particles has stimulated
considerable interest in the recent
past due to inherent scientific
interest as well as great potential
for development of novel and
useful  materials.  Nanoscale
particles display a wide variety of
unusual behavior when compared
to the bulk for two major reasons:
finite size effects in which
electronic bands give way to
molecular orbitals as the size

decreases; and surface/interface
effects.
For magnetic properties it is

largely the latter, surface/interface
effects, which cause significant
differences compared to the bulk.
In a nanoscale particle the surface
atoms/bulk  atoms  ratio is
sufficiently large (~ 50% for
diameter ~ 3nm) that
surface/interface  effects can
dominate the magnetic properties.
One useful point of view is that
small particles represent surface
matter in macroscopic quantities.
For instance, 10 mg of 3 nm
cobalt particles would contain 5
mg of surface cobalt.
Surface/interfacial effects may be
classified along the following
lines:

(1) Symmetry breaking at
surface or interface causing
changes of (a) band structure, (b)




atom coordination, and (c) lattice
constant.

(2) Electronic
environment/charge transfer at the
interface with, for example, (a)
ligands, (b) other metals, (c)
insulators, and (d)
semiconductors.

A considerable amount of new
knowledge of size effects on
intrinsic magnetic properties has
come from work on gas phase
clusters of atoms whose magnetic
moments have been measured
with Stern-Gerlach apparatus.7,8
Systems studied have included 3d
transition metals iron, cobalt, and
nickel; a 4d transition metal,
rhodium; and rare earths
gadolinium and terbium. Sizes
ranged from several atoms per
cluster up to a few hundred, the
latter corresponding to particle
diameters of

2 nm. The 3d transition
metals showed superparamagnetic
behavior (as expected) with
enhanced (~30-40%) magnetic
moments per atom as shown in
Figure 6.31. Theory ascribes
enhancement to changes in
atomic coordination, symmetries,
and/or lattice constants.9
Reduction may be a surface effect
resulting in weaker exchange. An
exciting discovery, stimulated by
theory,10 is that rhodium (a 4d
transition metal) clusters, Rhn, n
= 9-31, are ferromagnetic.11 This
Is thought to arise because of
reduced coordination and
icosohedral symmetry. Of course,
all these changes are ultimately
due to the very small size of the




particle.

Small metallic clusters have also
been incorporated into cluster
compounds. For example,
palladium clusters up to Pd561
with ligated phenyl and oxygen,
Pd561Phen360200, have been
made.12 These compounds have
never shown ferro-magnetism but
have shown interesting quantum
size effects in their paramagnetic
properties. Calculations indicate
for palladium that a 5.5% lattice
expansion  would make it
ferromagnetic.13 Why are
rhodium gas phase clusters
ferromagnetic  yet palladium
cluster compounds are not? The
answer could have a lot to do with
electron-donating ligands on the
palladium cluster compound. For
instance, Rosch et a/.14 studied
nickel clusters and saw the
ferromagnetism quenched as CO
ligands

100 200 300 400 500 600 700
Cluster size OV)

FIGURE 6.31 Low-temperature
average magnetic moment per
atom for nickel clusters at 78 K,
cobalt clusters at 78 K, and iron
clusters at 120 K as a function of
the number N of atoms in the
cluster. The right-hand scale gives
the spin imbalance per atom.
Reprinted with permission from
“Magnetic and Thermal
Properties”, In Proceedings of the
Scientific and Technology of
Atomically Engineered Materials,
1996, World Scientific Publishing
Co Pte Ltd.

were attached. An example from
our work is given in Figure 6.32




where it is shown that 4.4 nm
cobalt particles ligated with
dioctyl sulfide show a large
reduction in the saturation
magnetization. Thus, surface
Interactions are very important,
and the Stern-Gerlach clusters are
unigue because they are not
interacting with other substances.
At the surface, the coordination
number of each surface atom is
smaller than within the bulk,
hence the d-band of a collection
of transition metal atoms at the
surface is narrower than in the
bulk, leading to a high density of
states and hence enhanced
magnetism.15-17 The surface
magnetic moments are enhanced
by 10-30% over their bulk values
in ferromagnetic iron, nickel, and
body-centered cubic cobalt (100)
and (110) surfaces.16 A dramatic
case is the chromium (001)
surface, which undergoes a
ferromagnetic phase transition,
with an enhancement of about
3"B in its magnetic moment as
compared to its bulk value (which
IS antiferromagnetic in

FIGURE 6.32 Saturation
magnetization of 4.4 nm cobalt
particles with (A) and without (*)
dioctyl sulfide ligation.

nature).17,18 By contrast, the
results of experiments with
vanadium (100) surfaces show a
stable paramagnetic state for the

surface and vyield a 9%
contraction of the topmost
interlayer spacing.17

Experimental findings19 on thin




films of iron, nickel and cobalt
show enhancements of surface
moment by 30%, 20%, and 150%,
respectively, as compared to their
bulk.

Interfaces or small particles may
have significant changes in the
lattice constant relative to bulk.

For example, a study of
nanophase (d ~ 6nm) compressed
iron showed two Mossbauer

sextets that indicated the presence
of both a bulk and an interfacial
iron phase.20 The overall density
of the composite was ~ 75% of
the bulk, indicating that the
interfacial phase was less dense
than the bulk. The interfacial iron
had larger hyperfine fields and
isomer shifts than bulk iron. The
greater isomer shift was due to a
smaller electron density. The
enhanced hyperfine field was due
to greater exchange, a result of
moving to the right on the Bethe-
Slater curve due to the greater
lattice spacing in the expanded
interfacial phase. Rayl et al.21
cosputtered nickel and Si02 to
create small nickel particles with
a lattice constant increased by
9%. This caused a lowering of Tc,
which  correlated well  with
changes caused by high-pressure
studies, which decrease the lattice
spacing. Again this decrease in
Tc, and hence exchange constant
Jex, correlates with the inference
from the Bethe-Slater curve.
Would an expanded interfacial
phase of palladium  show
ferromagnetism? Analogously, an
expanded lattice for chromium
could yield ferromagnetism.




Could manganese be altered from
antiferromagnetic to
ferromagnetic in  such an
interfacial phase?

At an interface an adjacent metal
may perturb the d-band. For
example, copper on nickel
decreases the moment per atom of
nickel22 because copper donates
electrons to the nickel d-band,
thus partially filling the unpaired
hole. On the other hand, iron next
to silver sees an enhancement in A
per atom.23 Similar opposing
examples exist so the situation,
while robust with phenomena, is
very complex.24,25 One can
glean from the literature that an
important interfacial effect is the
electronic interaction between
adjacent materials. As discussed
above, electron donation by
ligands to palladium and cobalt
and by both copper and nickel
suppressed the magnetic moment
in a straightforward manner.
Other examples include cobalt
particles precipitated in
copper;26,27 iron particles in
mercury;28 and our own work
involving iron in MgF25 shown

in Figure 6.33. This is very
similar to the dioctyl sulfide
ligand quenching for cobalt

particles described above with,
most likely, the same physics.
Here we see that the smaller iron
particles have smaller Ms. The
quenching of Ms occurs due to
donation of electrons from the
MgF2, which surrounds the iron
particle. The donated electrons
partially fill the spin-unbalanced
d-band of the iron, decreasing the




magnetic moment per atom. The
larger quench for smaller particles
is

FIGURE 6.33 Saturation
magnetization versus temperature
for different-sized iron
crys—tallites in the [MgFe2]Fe
system. For bulk ion, os =
220emug_1. Reprinted  with
permission from D. Zhang et al,
Phys. Rev. B, 1998, 58, 14167,
American Physical Society.

due to the greater fraction of

surface/interfacial  iron.  The
relevant  parameter is  the
electronegativity of the two

substances. If the transition metal
IS more electro-negative, it takes
electrons and partially fills its d-
band holes to become less
magnetic, whereas if it is less
electronegative, the  reverse
occurs. Such a  proximity
correlation does not appear to be
discussed in the literature, but it is
consistent with available data and
the Slater picture of transition
metal alloys29 discussed briefly
above. Electronegativity is not
important in Slater’s picture
because the metals are atomically
mixed, but the simple concept of
d-band  hole  filling  with
concomitant change in ~ per atom
Is the same as that used above.

In  many situations particles
display a dead layer on their
surface in which the
magnetization is either reduced or
zero. This causes the total
saturation magetization of the
sample to be less than in the bulk,
more so for smaller particles. If
the layer is of constant thickness,




independent of the diameter of the
particle, it is easy to show that
then the  magnetization s
inversely proportional to the
diameter. An example30 of this
behavior is shown in Figure 6.34.
The thermal behavior of the
magnetization is also affected by
the large fraction of surface
material in nanoparticle systems.
The data in Figure 6.8 for iron
particles encapsulated in MgF2
show that the magnetization is
decreased more by temperature
for smaller particles. Analysis of
these data, as well as data for iron
encapsulated in magnesium, with
Bloch’s law showed that Bloch’s
law was still valid, but both the
Bloch constant Bloch exponent
were size-dependent, as shown in
Figures 6.35 and 6.36. The large
increase in B indicates that small-
particle magnetization is very
susceptible to temperature, most
likely due to the reduced
coordination of the iron atoms at
the surface.5

Another common effect seen for
nanoscale particles is surface
anisotropy, that is, an (additional)
energy binding the magnetization
to the particle analogous to the
crystal anisotropy. This occurs
because the spins at the surface
see the broken symmetry at the
surface and this affects the spin
alignment relative to the surface.

The hard magnetic properties of
particles are also very important
because of their potential
applications in magnetic
recording media. Coercivities in
the range of a few




FIGURE 6.34 Saturation
magnetization  versus inverse
mean particle diameter for
MnOFe203 particles prepared by
aerosol spray pyrolysis (solid
symbols) and aqueous phase
precipitation (open symbols). The
lines are guides for the eye. From
Aerosol Science & Technology:
“Aerosol Spray Pyrolysis
Synthesis of Magnetic Manganese
Ferrite Particles’’. 19, 453-467.
Copyright 1993. Cincinnati, OH.
Reprinted with permission.
FIGURE 6.35 Bloch constant as a
function of iron particle size. Iron
particles are encap-sulated in
either magnesium or MgF2.
Dashed line is bulk value.
Reprinted with permission from
D. Zhang et al, Phys. Rev. B,
1998, 58, 14167, American
Physical Society.

Fe core diameter (nm)

FIGURE 6.36 Bloch exponent as
a function of iron particle size.
Iron particles are encapsulated in
either magnesium or MgF2.
Dashed line is bulk value.
Reprinted with permission from
D. Zhang et al, Phys. Rev. B,
1998, 58, 14167, American
Physical Society.

kOe, which are much higher than
the values of their bulk
counterpart, have repeatedly been
reported for the last 3-4 decades.
A magnetic coating material on a
nanoparticle can have a dramatic
effect on coercivity (often
discussed in terms of exchange
anisotropyl). Meikeljohn and
Bean31 studied fine particles of
cobalt metal with an outer layer




of CoO. An usually large Hc was
explained in terms of exchange
coupling between the spins of the
ferromagnetic cobalt and
antiferromagnetic CoO; thus the
reversal of the spins of cobalt
atoms in the cobalt core material
was resisted by the strong crystal
anisotropy of the CoO.

Analogous results were obtained
in our laboratory32 for iron
particles. Hc was found to
increase with a decrease in
particle size from 12 nm to 3nm,
while  <JS increased  with
increasing size. These results
were explained by proposing that
Hc is strongly affected by the
interaction between the iron oxide
shell and the iron core. The
highest Hc obtained at room
temperature was 1050 Oe for a
particle with a 14.0 nm core, and
its value at 10 K was 1425 Oe.
However, smaller particles with
2.5 nm core size went from a
negligible Hc at 150 K to 3400
Oe at 10 K, showing the much
stronger influence of temperature
on the smaller nanoparticles. It
was proposed that the smaller iron
core “feels” much more the effect
of the iron oxide shell, due to the
higher iron oxide/iron ratio. The
strong decrease in Hc with
temperature increase was
explained as due to the onset of
superparamagnetic behavior of
the iron oxide shell.

An important conclusion is that
surface coatings in such small
particles can dominate Hc and can
also control the temperature
dependence. The coating spins




couple to the core via exchange,
resulting in  an  exchange
anisotropy.
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Lattice spacing

Minor axis of spheroid
Bloch exponent

Bloch constant

Magnetic induction (gauss)
Brillouin function

Major axis of spheroid
Speed of light

Curie constant

Diameter

Electron charge
Anisotropy energy

Lande g-factor

Magnetic field strength






