Theo yéu cu ciia khich hing, trong mt nim
qua, ching t61i 48 dijch qua 16 mén hoc, 34
cudn séch, 43 bai béo, 5 sb tay (chua tinh cic
tai liéu tir nim 2010 tr& vé& truéc) Xem & ddy

DICH VU "Cpisau mot lan lién lac, viée

DICH S it
TIENG

ANH |
CHUYRN Gia ca: co thé giam dén 10

NGANH nhin/l tran
NHANH

NHAT VA Chat luc_mg:Tgo dung niém tin cho
khach hang bang céng nghé 1.Ban

XAC théy duoc to.:ém b6 ban dich; 2.Ba,n

NHAT danh gia chat lwong. 3.Ban quyét
dinh thanh toan.

Tai liéu nay dwoc dich sang tiéng viét béi:

VA A2 L E T A (W 11|

T ban géc:

https://drive.google.com/folderview?id=0B4rAPqlxl MRDUNJOWGdzZ19fenM&usp=sharing

Lién hé dé mua:

thanhlam1910 2006@yahoo.com hoic frbwrthes@gmail.com hoic s6 0168 8557 403 (gap Lam)

Gi4 tién: 1 nghin /trang don (trang khéng chia cdt); 500 VND/trang song ngir

Dich tai li¢u ciaa ban: http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

https://drive.google.com/folderview?id=0B4rAPqlxIMRDUnJOWGdzZ19fenM&usp=sharing
mailto:thanhlam1910_2006@yahoo.com
mailto:frbwrthes@gmail.com
http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

CHAPTER
High-Level Design Flow

Checked 7/3 7h:57

This chapter describes the design flow
used to create complex FPGA and
ASIC devices. The designer starts
with a design specification, creates an
RTL description, verifies that
description, synthesizes the
description to gates, uses place and
route tools to implement the design in
the chip, and then verifies that the
final result is correct in terms of
function and timing. The high-level
design flow is shown in Figure 11-1.
The first step in a high-level design
flow is the design specification
process. This process involves
specifying the behavior expected of
the final design. The designer puts
enough detail into the specification so
that the design can be built. The
specification is usually written in the
designer’s native language and
specifies the expected function and
behavior of the design using textual
description and graphic elements.
Figure 11-1

High-Level Design Flow.

HDL Capture

After the specification has been
completed, the designer or designers
can begin the process of
Implementation. Some design teams
create a high- level behavioral or
algorithmic description of the design
to verify design intent, then convert
that description to RTL (Register
Transfer Level) later. However, most
design teams skip the behavioral
description and implement the RTL
directly. The RTL is created during
the HDL capture step. The designer

CHUONG 11

Quy trinh thiét ké mac cao

Design Flow: c6 thé dich 1a “luu luong
thiét ké”

Chuong nay trinh bay quy trinh thiét ké
dé tao ra céc thiét bj FPGA va ASIC
phtic tap. Nha thiét ké bat dau voi dac ta
ki thuat vé thiét ké, tao ra md ta RTL,
kiém tra mo ta do, tong hop cac md ta
thanh cong, su dung cac cong cu dit va
dinh tuyén dé thuc thi thiét ké trong
chip, va sau d6 kiém tra xem thiét ké
cubi cing c6 théa man chinh xac vé
chirc nang va thoi gian hay khéng. Hinh
11-1 biéu dién quy trinh thiét ké muc
cao.

Budc dau tién trong quy trinh thiét ké
muc cao la quy trinh md ta diac diém ky
thuat cua thiét ké. Trong qua trinh nay,
chung ta xac dinh nhirng dac tinh mong
doi cua thiét ké cudi cung. Nha thiét ké
phai tao ra bang dac ta ky thuat du chi
tiét dé phuc vu cho qué trinh thiét ké
ctia minh. Bang dic ta thuong duoc viét
bang ngdn ngir ban x& cta nha thiét ké
va md ta chirc nang va dac tinh mong
doi cua thiét ké st dung mo ta vin ban
va cé4c yéu té dd hoa.

Hinh 11-1

creates the VHDL RTL description
that describes the clock-by-clock
behavior of the design. The designer
most likely uses a common text editor
such as Emacs, or vi, whatever is
available on the designer’s computer.
Some designers also use high-level
entry tools that contain block editors
and state machine editors that
automatically create the VHDL code.

The designer enters the VHDL code
for entities of the design and checks
them for correct syntax. After the
syntax errors have been removed, the
designer can begin the process of
verifying the correctness of the
VHDL using RTL simulation.

RTL Simulation

The RTL simulation step is used to
verify the correctness of the RTL
VHDL description. The designer has
described the clock-by-clock behavior
of the design. Now, the designer uses
stimulus that represents the design
environment to drive the design and
check to make sure that the results are
correct. A standard VHDL simulator
can be used to read the RTL VHDL
description and verify the correctness
of the design.

The VHDL simulator reads the
VHDL description, compiles it into
an internal format, and then executes
the compiled format using test
vectors. The designer can look at the
output of the simulation and
determine whether or not the design is
working properly.

The usual RTL simulation step looks
like Figure 11-2.

The designer creates the VHDL as
described earlier and compiles the
VHDL RTL description to remove
any syntax errors. After the syntax

errors have been removed, the design
Is simulated to verify the correctness
of the design. After the simulation has
completed, the designer analyzes the
results of the simulation to determine
if the design is correct or not. If not,
the designer must fix the VHDL code
and compile and simulate the design
again. This process continues until all
errors are removed.

The designer loads the compiled
VHDL description into the simulator
and applies stimulus to the design.
This may be a file of input stimulus, a
set of commands the designer enters,
or an automatic testbench that applies
the stimulus and checks the results.
(These are discussed in Chapter 14,
“RTL Simulation.”) After the
stimulus has Dbeen entered, the
designer runs the simulation for as
long as needed to generate enough
output data to determine if the design
Is correct. At the beginning of the
design process, this may be only a
few vectors to make sure that the
design resets properly. But later, more
and more of the vectors are run as the
design starts to function properly.
Figure 11-2

RTL Simulation Flow.

After the simulation has been run, the
simulator will have generated output
data that can be analyzed. The
designer usually has a number of
ways to analyze the data. Most
common are waveform output and
text tabular output. A sample
waveform output is shown in Figure
11-3.

A waveform display shows the values
of the signals of the design over time.
The designer can see the relationships
between signal transitions very easily.

Using the waveform display, the
designer can determine when system
clock edges occur and if the proper
signal transitions are present.

The text tabular output is the same
data as the waveform display, but in a
different format. A sample output is
shown in Figure 11-4.

All of the signal transitions are shown
from top to bottom instead of left to
right. It is also easier to read some of
the signal values when the signal has
a lot of changes in a short amount of
time and the signal values are
represented by a number of text
characters. Most text table outputs
can also filter the output data using a
number of different mechanisms such
as only on Print on Change or Print
on Strobe.

While the output data is being
analyzed, the user finds errors in the
design description. The user uses the
waveform and tabular displays to
trace down the source of the errors in
the VHDL code, make a change to the
VHDL to fix the problem, recompile
the design again, and rerun the test. If
the problem is fixed, the designer tries
to find the next problem, until all
problems have been found.

When the designer is happy with the
behavior of the design, the designer
can start the process of building the
real hardware device. To implement
the design, the designer uses VHDL
synthesis tools. The next step in the
process is the VHDL synthesis step.
VHDL Synthesis

The goal of the VHDL synthesis step
IS to create a design that implements
the required functionality and

matches the designer’s constraints in
speed, area, or power.

The VHDL synthesis tools convert
the VHDL description into a netlist in
the target FPGA or ASIC technology.
For the VHDL synthesis tool to
perform this step properly, the VHDL
code must be written in a particular
style, as discussed in Chapter 10,
“VHDL Synthesis.”

To synthesize a VHDL description,
the designer reads the verified VHDL
description into the VHDL synthesis
tool in the same way that the designer
read the design into the VHDL
simulator. The VHDL synthesis tool
reports syntax errors and synthesis
errors. Synthesis errors usually result
from the designer using constructs
that are not synthesizable. For
instance, access types in VHDL are
not synthesizable, because they could
specify hardware that is dynamic in
nature. Of course, syntax errors result
from improper VHDL syntax being
read by the VHDL synthesis tool.
Presumably, most all of these errors
will already have been taken care of
because the VHDL code has already
been verified with the VHDL
simulator. The VHDL synthesis tool
also reports warnings of constructs
that have the possibility of generating
mismatches between the RTL
simulation results and the output
netlist simulation results.

The designer reads the VHDL design
into the VHDL synthesis tool. If there
are no syntax errors, the designer can
synthesize the design and map the
design to the target technology. If the
designer had to make changes to the
VHDL description, then the VHDL

description needs to be simulated
again and the output validated for
correctness. First, the designer needs
to make sure that the synthesizer is
producing an output in the target
technology that looks reasonable. The
designer looks at the synthesizer
output to determine whether or not
the synthesizer produced a good
result.

The synthesizer produces an output
netlist in the target technology and a
number of report files. By looking at
the netlist, the designer can determine
whether or not the design looks
reasonable. For most reasonable size
designs, however, it can be very
difficult to determine how well the
synthesizer implemented the function.
The designer looks at the report files
to determine the quality of the
synthesis output. The most common
output files are the timing report and
the area report. Most synthesis tools
produce a number of other reports
such as hierarchy reports, instance
reports, net reports, power reports,
and others. The most useful reports
initially are the timing and area
reports, because these are usually the
most critical factors.

Following is a sample area report:

*hkhkkhkhkkkkhkkikkkhkhkkkkikkkkikhkhkkikhkikiikikikx
*hkhkkhkkhkkkkhkkikkkhkkikkikkikikkhkkikikkikikk

Cell: adder View: test Library: work
*hkhkkhkrkkkkhkhkkkhkrkkkihkkkkhkikkhkkidkhkikikikikikx

k*khkkkkkkkkkkkkkkkkkkkkkkkk

Total accumulated area :
Number of LCs: 8
Number of CARRYs: 7
Number of ports : 24
Number of nets : 107
Number of instances: 91

Number of references to this view :
0

Cell Library References Total

Area

GND flex101x 11 GND

OUTBUF flex108 x 1 8
OUTBUF
INBUF flex1016 x 1 16 INBUF
CARRY flex107x 1 7
CARRYs

OR2 flex1014x 114 OR2

AND2 flex1021 x 121 AND2
LCELL flex108 x 18 LCs
XOR2 flex1016 x 1 16 XOR2
The area report tells the designer the
size of the implemented design. The
units of measure are determined by
the units used when the synthesis
library was implemented. For
instance, the typical unit for ASIC
designs is equivalent 2-input NAND
gates, or gate equivalents. Using this
measurement, a 2-input NAND gate
would consume one gate equivalent, a
2-input AND gate would also
consume one gate equivalent. A 4-
input NAND gate would consume
two gate equivalents. For FPGA
designs, equivalent gate
measurements vary from
manufacturer to manufacturer

because each has a different-sized
basic cell. In the preceding sample
area report, the design produced 8 LC
(Logic Cells) and 7 Carry devices. A
typical LC is 10 to 12 logic gates; the
Carry device is 2 to 3 gates. So, this
example would represent about 90 to
120 gates.

The area report shows the designer
how much of the resources of the chip
the design has consumed. The
designer can tell if the design is too
big for a particular chip and the

designer needs to target a larger chip,
if the design should go into a smaller
chip, or if the current chip will work
fine. The designer can also get a
relative size of the design to use in
later stages of the design process.

The timing report shows the timing of
critical paths or specified paths of the
design. The designer examines the
timing of the critical paths closely
because these paths ultimately
determine how fast the design can
run. If the longest path is a timing
critical part of the design and is not
meeting the speed requirements of the
designer, then the designer may have
to modify the VHDL code or try new
timing constraints to make the path
meet timing.

The following is a sample timing
report:

Critical Path Report

Critical path #1, (unconstrained path)

NAME GATE ARRIVAL
LOAD

NAME GATE ARRIVAL
LOAD

data arrival time 13.80

In this report, the worst-case path is

listed shown with estimated time

values for each node traversed in the

design. The timing analyzer calculates

the time for a path from an input pin

to a flip-flop or output, or from a flip-

flop output to a flip-flop input, or

output pin.

The designer has the ability to ask for
the timing for particular paths of
interest, or of the paths that have the
longest timing value, and how many
to display. As mentioned previously,

the worst-case paths ultimately
determine the speed of the design. For
instance, in this case, the worst- case
path is 13.8 nanoseconds; therefore,
the fastest this design would be able
to run is about 72 MHz.

The last type of output data that the
designer can examine is the netlist for
the design in the target technology.
This output is a gate or macro-level
output in a format compatible with
the place and route tools that are used
to implement the design in the target
chip. For instance, most place and
route tools for FPGA technologies
take in an EDIF netlist as an input
format. The primitives used in the
netlist are those used in the synthesis
library to describe the technology.
The place and route tools understand
what to do with these primitives in
terms of how to place a primitive and
how to route wires to them. The
following example uses a VHDL
netlist for ease of understanding. To
save space (and boredom), this is not
a complete netlist, but gives the
reader an idea of how a netlist is
structured. The complete netlist can
be found on the included CD:

-- Definition of adder

library |IEEE, EXEMPLAR; use
IEEE.STD LOGIC 1164.all; use
EXEMPLAR.EXEMPLAR 116 4.all;
-- Library use clause for technology
cells

library altera ;

use altera.all ;

entity adder is port (

a : IN std_logic_vector (7 DOWNTO
0) ; b : IN std logic_vector (7
DOWNTO 0 ; ¢ = OuUT
std_logic_vector (7 DOWNTO 0)) ;
end adder ;

architecture test of adder is
component XOR2 port (

Y : OUT std_logic ;

IN1 : IN std_logic ;

IN2 : IN std_logic) ;

end component ; component LCELL
port (

Y : OUT std_logic ;

IN1 : IN std_logic) ;

end component ; component AND2
port (

Y : OUT std_logic ;

IN1 : IN std_logic ;

IN2 : IN std_logic) ;

end component;

signal c_dup0_7, c_dupO_6,
Cc_dup0 5, ¢ dup0_4, c dupO_3,
c_dup0_2,

C_dupO_1, c_dup0_0,
modgen 0 11 10 c_int 7,
modgen_0 11 10 _c_int_6,
modgen_0 11 10 _c_int 5,
modgen 0 11 10 c_int 4,
modgen_0 11 10 c_int_3,
modgen 0 11 10 c_int 2,
modgen 0 11 10 c int 1,

modgen_0 11 10 10 0 10 s1,
modgen_0 11 10 _10 0 10 s2,
modgen 0 11 10 10 0 10 w1,
modgen 0 11 10 10 0_I0_ w2,
modgen 0 11 10 10 0_I0_ws,
modgen 0 11 10 10 0_I0_w4,

b 2int, b 1.int, b 0.int, U_O:
std_logic ;

begin

modgen_0 11 10 10 0 _I0_sumO

XOR2 portmap (Y=>
modgen 0 11 10 10 0 10 s1,

IN1=>a 0 int, IN2=>U_0);
modgen 0 11 10 10 0 [0 suml

XOR2portmap (Y=>
modgen 0 11 10 10 0 10 s2,
IN1=>modgen 0 11 10 10 0O 10 s1,
IN2=>Db_0_int);

modgen_0 11 10_10_0_I0_sum2 :
LCELL port map (Y=>c_dupO O,
IN1=> modgen_0 11 10 _I0_0_I0_s2);
modgen_0 11 10 _10 0 10 _cO : AND2

port map (
Y=>modgen 0 11 10 10 0 10 wi,

IN1=>a 0 int, IN2=>b_0_int);
modgen_0 11 10 _10 0 10 cl1 : AND2
port map (
Y=>modgen 0 11 10 10 0 10 w2,

IN1=>a 0 int, IN2=>U_0);
modgen_0 11 10 _10 0 10 _c2 : AND2
port map (

Y=>modgen 0 11 10 10 0 10 w3,
IN1=>U_0, IN2=>b_0_int);
ix4 3 : OUTBUF port map (
\OUT\=>c(3)
ix4 4 : OUTBUF port map (
\OUT\=>c(2)
ix4 5 : OUTBUF port map (
\OUT\=>c(1)
ix4 6 : OUTBUF port map (
\OUT\=>c(0)
U 0 XMPLR : GND port map (
Y=>U_0); end test ;
Notice that all of the other
interconnect signal names have names
such as modgen 0 11 xx or ix123.
There is no corresponding signal
name in the source file to specify the
signal name; therefore, the synthesis
tool generates names for these
signals. The netlist can be used to
figure out how well the synthesizer
implemented a part of the design, or
to track down a problem net. It can be
very useful to find out why a critical
path was implemented too slowly.
When the netlist meets the designer’s
timing, area, power, and other
constraints, the next step is to pass the
netlist to the gate level simulator. This
simulator checks the functionality of
the synthesized design.

Functional Gate-Level Verification
Some designers might want to do a
quick check on the output of the
synthesis tool to make sure that the
synthesis tool produced a design that
iIs functionally correct. If proper
design rules are followed for the input
VHDL description, the synthesis tool
should never generate an output that
is functionally different from the RTL
VHDL input, unless the tool has a
bug. However, if some of the
warnings or errors are ignored or
some part of the design is written
using a strange VHDL style, the
synthesizer can produce an output
netlist that does not exactly match the
RTL input in terms of functionality.
Most designers like to run a quick
check on the results of the synthesis
tool to make sure the synthesis tool
produced a functionally correct
output.

To do this, the designer runs a
functional gate-level verification. The
designer reads the output VHDL
netlist from the synthesis tool plus a
library of the synthesis primitives into
the VHDL simulator and runs the
simulation using the RTL verification
vectors. If the design matches, then
the synthesis tool did not produce
logic mismatches; if it does not
match, the designer needs to debug
the VHDL RTL description to see
what is wrong.

The most common method for
performing this step is to run a
VITAL simulation of the netlist from
the synthesis tool. For a completely
functional simulation, no timing is
back-annotated. If the synthesis tool
supports estimated timing and SDF

file generation, the synthesis tool
could write the VHDL netlist and an
SDF timing file for the design. The
designer could use these two files to
run a VITAL simulation with
estimated timing. After the design has
been functionally verified, it is passed
to the place and route tools to
implement the design.

Place and Route

Place and route tools are used to take
the design netlist and implement the
design in the target technology
device. The place and route tools
place each primitive from the netlist
into an appropriate location on the
target device and then route signals
between the primitives to connect the
devices according to the netlist. Place
and route tools are typically very
architecture and device dependent.
These tools are tuned to take
advantage of each architectural and
routing advantage the device contains.
FPGA vendors provide these tools
because the differences in
architectures are large enough that
writing a common tool for all
architectures would be very difficult.
Place and route tools for ASIC
devices can be obtained from the
ASIC vendor or EDA (Electronic
Design Automation) vendors. ASIC
architectures do not have as wide a
variation between architectures as
FPGA architectures and, therefore,
place and route tools exist that can
handle lots of different ASIC
architectures.

Figure 11-5

Place and Route Data Flow.

Figure 11-5 shows a dataflow
diagram of the place and route tools.
Inputs to the place and route tools are
the netlist in EDIF or another netlist
format, and possibly timing
constraints. The format of the netlist
input file varies from manufacturer to
manufacturer. Some tools use EDIF;
others use proprietary formats such as
XNF.

Another input to some place and route
tools is the timing constraints, which
give the place and route tools an
indication about which signals have
critical timing associated with them
and to route these nets in the most
timing efficient manner. These nets
are typically identified during the
static timing analysis process during
synthesis. These constraints tell the
place and route tool to place the
primitives in close proximity to one
another and to use the fastest routing.
The closer the cells are, the shorter
the routed signals will be and the
shorter the time delay.

Some place and route tools allow the
designer to specify the placement of
large parts of the design. This process
Is also known as floorplanning.
Floorplanning allows the user to pick
locations on the chip for large blocks
of the design so that routing wires are
as short as possible. The designer lays
out blocks on the chip as general
areas. The floorplanner feeds this
information to the place and route
tools so that these blocks are placed
properly. After the cells are placed,
the router makes the appropriate
connections.

After all the cells are placed and

routed, the output of the place and
route tools consists of data files that
can be used to implement the chip. In
the case of FPGAs, these files
describe all of the connections needed
to make the FPGA macrocells
implement the functionality required.
Antifuse FPGAs use this information
to burn the appropriate fuses, while
reprogrammable devices download
this information to the device to turn
on the appropriate transistor
connections.

The other output from the place and
route software is a file used to
generate the timing file. This file
describes the actual timing of the
programmed FPGA device or the
final ASIC device. This timing file, as
much as possible, describes the
timing extracted from the device
when it is plugged into the system for
testing. The most common format of
this file for most simulators is SDF
(Standard Delay Format). Sometimes,
proprietary formats are generated and
later translated to SDF. SDF is used
to back-annotate the post route timing
information from place and route
tools into the post layout timing
simulation.

Post Layout Timing Simulation

After the place and route process has
completed, the designer will want to
verify the results of the place and
route process. There are a number of
methods to accomplish this task but
the most common is to use post route
gate-level simulation. This simulation
combines the netlist used for place
and route with the timing file from the
place and route process into a
simulation that checks both
functionality and timing of the design.

The designer can run the simulation
and generate accurate output
waveforms that show whether or not
the device is operating properly and if
the timing is being met.

If the design has been properly
structured, the same test vectors used
for the RTL simulation can be used
for the post route gate-level
simulation. In this way, the designer
is saved the process of generating a
new set of vectors to check the gate-
level design and verifying the new
vector output values.

Post route gate-level simulation, if
done properly, also uses the same
simulator as the RTL simulation. For
VHDL simulations, this requires a
VITAL-compliant (standard way of
describing designs with designs that
allow SDF timing back-annotation)
VHDL simulator. VHDL simulators
that are not VITAL-compliant do not
accelerate the execution of the gate-
level primitives and cannot accept
SDF to back annotate the timing.

Static Timing

For designs of 10,000 gates to
100,000 gates, post route timing
simulation can be a good method of
verifying design functionality and
timing. However, as designs get
larger, or if the designer does not
have test vectors, the designer can use
static timing analysis to make sure the
design meets the timing requirements.
A static timing analyzer traces each
path in the design and keeps track of
the timing from a clock edge or an
input. A timing report is then
generated in a number of formats. For

instance, the designer can ask for all
paths and get an enormous listing of
every path in the design. A more
intelligent method, however, is to ask
for the most timing critical paths in
the design and make sure the timing
constraints have been met.

Typical static timing analyzers have a
number of report types that can be
generated so that the designer can
make sure the critical paths of the
design can be found and verified to be
within the required specifications. If
paths are not within the
specifications, the static timing
analyzer shows the entire path so that
the designer can try to fix the
problem.

SUMMARY

In this chapter, the complete VHDL
design process using synthesis was
described. This process is very similar
no matter which VHDL synthesis or
simulation tool is used. The designer
must follow a number of steps that
add more detail to the design. At each
step, the designer has checks to make
sure that the correct behavior is being
implemented. At the beginning of the
process, RTL simulation is used to
verify correctness. After synthesis,
the netlist, timing report, and area
report are all examined to make sure
the design fits the designer’s
constraints. Functional simulation is
then run to verify that the synthesis
tool produced a functionally correct
design. The design is put through the
place and route process to implement
the design in the target technology.
The final check is then to verify using
post route gate level simulation that
the design is functionally correct and

meets timing.

