Theo yéu cu ciia khich hing, trong mt nim
qua, ching t61i 48 dijch qua 16 mén hoc, 34
cudn séch, 43 bai béo, 5 sb tay (chua tinh cic
tai liéu tir nim 2010 tr& vé& truéc) Xem & ddy

DICH VU "Cpisau mot lan lién lac, viée

DICH S it
TIENG

ANH |
CHUYRN Gia ca: co thé giam dén 10

NGANH nhin/l tran
NHANH

NHAT VA Chat luc_mg:Tgo dung niém tin cho
khach hang bang céng nghé 1.Ban

XAC théy duoc to.:ém b6 ban dich; 2.Ba,n

NHAT danh gia chat lwong. 3.Ban quyét
dinh thanh toan.

Tai liéu nay dwoc dich sang tiéng viét béi:

VA A2 L E T A (W 11|

T ban géc:

https://drive.google.com/folderview?id=0B4rAPqlxl MRDUNJOWGdzZ19fenM&usp=sharing

Lién hé dé mua:

thanhlam1910 2006@yahoo.com hoic frbwrthes@gmail.com hoic s6 0168 8557 403 (gap Lam)

Gi4 tién: 1 nghin /trang don (trang khéng chia cdt); 500 VND/trang song ngir

Dich tai li¢u ciaa ban: http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

https://drive.google.com/folderview?id=0B4rAPqlxIMRDUnJOWGdzZ19fenM&usp=sharing
mailto:thanhlam1910_2006@yahoo.com
mailto:frbwrthes@gmail.com
http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

SPRINT: A Scalable Parallel Classifier for
Data Mining checked 24/2 4 h 7

Abstract

Classification is an important data mining
problem. Although classification is a well-
studied problem, most of the current
classification algorithms require that all or a
portion of the the entire dataset remain
permanently in memory. This limits their
suitability for mining over large databases.
We present a new decision-tree-based
classification algorithm, called SPRINT that
removes all of the memory restrictions, and
Is fast and scalable.

The algorithm has also been designed to be
easily parallelized, allowing many
processors to work together to build a single
consistent model. This parallelization, also
presented here, exhibits excellent scalability
as well. The combination of these
characteristics makes the proposed
algorithm an ideal tool for data mining.

1 Introduction

Classification has been identified as an
Important problem in the emerging field of
data mining [2]. While classification is a
well-studied problem (see [24] [16] for
excellent overviews), only recently has
there been focus on algorithms that can
handle large databases. The intuition is that
by classifying larger datasets, we will be
able to improve the accuracy of the
classification model. This hypothesis has

SPRINT: Mot cong cu phén loai kha mé
rong cho qua trinh khai thac dir liéu

Tom tit

Phan loai 1a mot van dé quan trong trong
khai thac dir liéu. Mac du day 1a mot van
dé da dugc nghién cau thiu déo, hau hét
cac thuat toan phan loai hién nay doi hoi
tat ca hoic mot phan cua toan bo tap dir
licu phai nam thuong truc trong bo nho.
biéu nay 1am cho ching khéng phu hop
dé khai thac nhitng co s¢ dir lieu 16n.
Chdng toi sé trinh bay mot thuat toan
phan loai ma&i hoat dong dua trén cay
quyét dinh, duoc goi 1a SPRINT c6 kha
ning loai bo tat ca nhitng rang budc vé bo
nhé, cuing véi téc dd nhanh va c6 kha
nang mo rong duoc.

Chuing tdi ciing d3 thiét ké cac thuat toan
dé dé dang song song hda, cho phép
nhiéu bo xir 1y 1am viéc véi nhau dé xay
dung mét md hinh nhat quan. Quéa trinh
song song hoa dugc trinh bay ¢ day ciing
cho thay kha ning mé rong tuyét voi cua
thuat toan. Tt ca nhitng dic tinh nay 1am
cho thuat toan dé xuat tré thanh mot cong
cu ly tudng trong khai thac dir liéu.

been studied and confirmed in [4], [5], and

[6].

In classification, we are given a set of
example records, called a training set, where
each record consists of several fields or
attributes. Attributes are either continuous,
coming from an ordered domain, or
categorical, coming from an unordered
domain. One of the attributes, called the
classifying attribute, indicates the class to
which each example belongs. The objective
of classification is to build a model of the
classifying attribute based upon the other
attributes. Figure 1(a) shows a sample
training set where each record represents a
car-insurance applicant. Here we are
interested in building a model of what
makes an applicant a high or low insurance
risk. Once a model is built, it can be used to
determine the class of future unclassified
records. Applications of classification arise
in diverse fields, such as retail target
marketing, customer retention, fraud
detection and medical diagnosis [16].

Several classification models have been
proposed over the vyears, e.g. neural
networks [14], statistical models like
linear/quadratic discriminants [13], decision
trees [3][20] and genetic models[ll]. Among
these models, decision trees are particularly
suited for data mining [2] [15]. Decision

trees can be constructed relatively fast
compared to other methods. Another
advantage is that decision tree models are
simple and easy to understand [20].
Moreover, trees can be easily converted into
SQL statements that can be used to access
databases efficiently [1]. Finally, decision
tree classifiers obtain similar and sometimes
better accuracy when compared with other
classification methods [16]. We have
therefore focused on building a scalable and
parallelizable decision-tree classifier.

A decision tree is a class discriminator that
recursively partitions the training set until
each partition consists entirely or
dominantly of examples from one class.
Each non-leaf node of the tree contains a
split point which is a test on one or more
attributes and determines how the data is
partitioned. Figure 1(b) shows a sample
decision-tree classifier based on the training
set shown in Figure la. (Age < 25) and
(CarType E {sports}) are two split points
that partition the records into High and Low
risk classes. The decision tree can be used to
screen future iInsurance applicants by
classifying them into the High or Low risk
categories.

Random sampling is often used to handle
large datasets when building a classifier.
Previous work on building tree-classifiers
from large datasets includes Catlett’s study

of two methods [4][25] for improving the
time taken to develop a classifier. The first
method used data sampling at each node of
the decision tree, and the second discretized
continuous attributes. However, Catlett only
considered datasets that could fit in
memory; the largest training data had only
32,000 examples.

Chan and Stolfo [5] [6] considered
partitioning the data into subsets that fit in
memory and then developing a classifier on
each subset in parallel. The output of
multiple classifiers is combined using
various algorithms to reach the final
classification. Their studies showed that
although this approach reduces running time
significantly, the multiple classifiers did not
achieve the accuracy of a single classifier
built using all the data. Incremental learning
methods, where the data is classified in
batches, have also been studied [18][25].

However, the cumulative cost of classifying
data incrementally can sometimes exceed
the cost of classifying the entire training set
once. In [1], a classifier built with database
consider-ations, the size of the training set
was overlooked. Instead, the focus was on
building a classifier that could use database
indices to improve the retrieval efficiency
while classifying test data.

Work by Fifield in [9] examined
parallelizing the decision-tree classifier 1D3
[19] serial classifier. Like ID3, this work
assumes that the entire dataset can fit in real
memory and does not address issues such as
disk 1/0. The algorithms presented there
also require processor communication to
evaluate any given split point, limiting the
number of possible partitioning schemes the
algorithms can efficiently consider for each
leaf. The Darwin toolkit from Thinking
Machines also contained a parallel
implementation of the decision-tree
classifier CART [3]; however, details of this
parallelization are not available in published
literature.

The recently proposed SLIQ classification
algorithm [15] addressed several issues
in building a fast scalable classifier. SLIQ
gracefully handles disk-resident data that is
too large to fit in memory. It does not use
small memory-sized datasets obtained via
sampling or partitioning, but builds a single
decision tree using the entire training set.
However, SLIQ does require that some data
per record stay memory-resident all the
time. Since the size of this in-memory data
structure grows in direct proportion to the
number of input records, this limits the
amount of data that can be classified by
SLIQ.

We present in this paper a decision-tree-
based clas-sification algorithm, called
SPRINT , that removes all of the memory
restrictions, and is fast and scalable. The
algorithm has also been designed to be
easily parallelized. Measurements of this
parallel implementation on a shared-nothing
IBM POWERparallel System SP2 [12], also
presented here, show that SPRINT has
excellent scaleup, speedup and sizeup
properties. The combination of these
characteristics makes SPRINT an ideal tool
for data mining.

The rest of the paper is organized as
follows: In Section 2 we discuss issues in
building decision trees and present the serial
SPRINT algorithm. Section 3 describes the
parallelization of SPRINT as well as two
approaches to parallelizing SLIQ. In Section
4, we give a performance evaluation of the
serial and parallel algorithms using
measurements from their implementation on
SP2. We conclude with a summary in
Section 5. An expanded version of this
paper is available in [22],

2 Serial Algorithm

A decision tree classifier is built in two
phases [3] [20]: a growth phase and a prune
phase. In the growth phase, the tree is built
by recursively partitioning the data until
each partition is either “pure” (all members

belong to the same class) or sufficiently
small (a parameter set by the user). This
process is shown in Figure 2.

The form of the split used to partition the
data depends on the type of the attribute
used in the split. Splits for a continuous
attribute A are of the form value(A) < x
where a: is a value in the domain of A.
Splits for a categorical attribute A are of the
form value(A) £ X where X C domain(A).
We consider only binary splits because they
usually lead to more accurate trees;
however, our techniques can be extended to
handle multi-way splits. Once the tree has
been fully grown, it is pruned in the second
phase to generalize the tree by removing
dependence on statistical noise or variation
that may be particular only to the training
set.

The tree growth phase is computationally
much more expensive than pruning, since
the data is scanned multiple times in this
part of the computation. Pruning requires
access only to the fully grown decision-
tree. Our experience based on our previous
work on SLIQ has been that the pruning
phase typically takes less than 1% of the
total time needed to build a classifier. We
therefore focus only on the tree-growth
phase. For pruning, we use the algorithm
used in SLIQ, which is based on the

Minimum Description Length principle
[21].

Partition(Data S)
if (all points in S are of the same class) then
return; for each attribute A do

evaluate splits on attribute A\

Use best split found to partition S into Si
and S2; Partition(5i);

Partition™);

Initial call: Partition(TrainingData)

Figure 2: General Tree-growth Algorithm

There are two major issues that have critical
per-formance implications in the tree-
growth phase:

1. How to find split points that define node
tests.

2. Having chosen a split point, how to
partition the data.

The well-known CART [3] and C4.5 [20]
classifiers, for example, grow trees depth-
first and repeatedly sort the data at every
node of the tree to arrive at the best splits
for numeric attributes. SLIQ, on the other
hand, replaces this repeated sorting with
one-time sort by using separate lists for each

attribute (see [15] for details). SLIQ uses a
data structure called a class list which must
remain memory resident at all times. The
size of this structure is proportional to the
number of input records, and this is what
limits the number of input records that SLIQ
can handle.

SPRINT addresses the above two issues
differently from previous algorithms; it has
no restriction on the size of input and yet is
a fast algorithm. It shares with SLIQ the
advantage of a one-time sort, but uses
different data structures. In particular, there
Is no structure like the class list that grows
with the size of input and needs to be
memory-resident. We further discuss
differences between SLIQ and SPRINT in
Section 2.4, after we have described
SPRINT.

2.1 Data Structures
Attribute lists

SPRINT initially creates an attribute list for
each attribute in the data (see Figure 3).
Entries in these lists, which we will call
attribute records, consist of an attribute
value, a class label, and the index of the
record (rid) from which these value were
obtained. Initial lists for continuous
attributes are sorted by attribute value once
when first created. If the entire data does not
fit in memory, attribute lists are maintained
on disk.

The initial lists created from the training set
are associated with the root of the
classification tree. As the tree is grown and
nodes are split to create new children, the
attribute lists belonging to each node are
partitioned and associated with the children.
When a list is partitioned, the order of the
records in the list is preserved; thus,
partitioned lists never require resorting.
Figure 4 shows this process pictorially.

Histograms

For continuous attributes, two histograms
are associated with each decision-tree node
that is under consideration for splitting.
These histograms, denoted as Cabove and
Cbelow, are used to capture the class
distribution of the attribute records at a
given node. As we will see, Chbelow
maintains this distribution for attribute
records that have already been processed,
whereas Cabove maintains it for those that
have not.

Categorical attributes also have a histogram
associated with a node. However, only one
histogram is needed and it contains the class
distribution for each value of the given
attribute. We call this histogram a count
matrix.

Figure 4: Splitting a node’s attribute lists

Since attribute lists are processed one at a
time, memory is required for only one set of

such histograms. Figures 5 and 6 show
example histograms.

2.2 Finding split points

While growing the tree, the goal at each
node is to de-termine the split point that
“best” divides the training records
belonging to that leaf. The value of a split
point depends upon how well it separates
the classes. Several splitting indices have
been proposed in the past to evaluate the
goodness of the split. We use the gini index,
originally proposed in [3], based on our
experience with SLIQ. For a data set S
containing examples from n classes, gini(S)
Is defined as gini(S) = 1 — where pj is the
relative frequency of class j in S. If a split
divides S into two subsets S\ and 52, the
index of the divided data ginisput{S) is
given by ginisput(S) - ~gini(Si) + ~ginifa).
The advantage of this index is that its
calculation requires only the distribution of
the class values in each of the partitions.

To find the best split point for a node, we
scan each of the node’s attribute lists and
evaluate splits based on that attribute. The
attribute containing the split point with the
lowest value for the gini index is then used
to split the node. We discuss next how split
points are evaluated within each attribute
list.

Continuous attributes

For continuous attributes, the candidate split
points are mid-points between every two
consecutive at-% tribute values in the
training data. For determining the split for
an attribute for a node, the histogram
Cbelow is initialized to zeros whereas
Cabove is initial-

Figure 5: Evaluating continuous split points

ized with the class distribution for all the
records for the node. For the root node, this
distribution is obtained at the time of
sorting. For other nodes this distribution is
obtained when the node is created
(discussed below in Section 2.3).

Attribute records are read one at a time and
Cbelow and Cabove are updated for each
record read. Figure 5 shows the schematic
for this histogram update. After each record
Is read, a split between values (i.e. attribute
records) we have and have not yet seen is
evaluated. Note that Cbeiow and CaboVe
have all the necessary information to
compute the gini index. ? ice the lists for
continuous attributes are kept in sorteu
order, each of the candidate split-points for
an attribute are evaluated in a single
sequential scan of the corresponding
attribute list. If a winning split point was
found during the scan, it is saved and the
Cbeiow and Cabove histograms are
deallocated before processing the next
attribute.

Categorical attributes

For categorical split-points, we make a
single scan through the attribute list
collecting counts in the count matrix for
each combination of class label and attribute
value found in the data. A sample of a count
matrix after a data scan is shown in Figure
6. Once we are finished with the scan, we
consider all subsets of the attribute values as
possible split points and compute the
corresponding gini index. If the cardinality
of an attribute is above certain threshold, the
greedy algorithm initially proposed for IND
[17] is instead used for subsetting. The
important point is that the infor-mation

required for computing the gini index for
any subset splitting is available in the count
matrix.

The memory allocated for a count matrix is
reclaimed after the splits for the
corresponding attribute have been
evaluated.

Figure 6: Evaluating categorical split points

2.3 Performing the split

Once the best split point has been found for
a node, we execute the split by creating
child nodes and dividing the attribute
records between them. This requires
splitting the node’s lists for every attribute
into two (see Figure 4 for an illustration) .
Partitioning the attribute list of the winning
attribute (i.e. the attribute used in the
winning split point — Age in our example)
Is straightforward. We scan the list, apply
the split test, and move the records to two
new attribute lists — one for each new
child.

Unfortunately, for the remaining attribute
lists of the node (CarType in our example),
we have no test that we can apply to the
attribute values to decide how to divide the
records. We therefore work with the rids. As
we partition the list of the splitting attribute
(i.e. Age), we insert the rids of each record

into a probe structure (hash table), noting to
which child the record was moved. Once we
have collected all the rids, we scan the lists
of the remaining attributes and probe the
hash table with the rid of each record. The
retrieved information tells us with which
child to place the record.

If the hash-table is too large for memory,
splitting is done in more than one step. The
attribute list for the splitting attribute is
partitioned upto the attribute record for
which the hash table will fit in memory;
portions of attribute lists of non-splitting
attributes are partitioned; and the process is
repeated for the remainder of the attribute
list of the splitting attribute. If the hash-
table can fit in memory (quite likely for
nodes at lower levels of the tree), a simple
optimization is possible. We can build the
hash table out of the rids of only the smaller
of the two children. Relative sizes of the
two children are determined at the time the
split point is evaluated.

During this splitting operation, we also
build class

Figure 7: Attribute and Class lists in SLIQ
histograms for each new leaf. As stated

earlier, these histograms are used to
initialize the Ca\,ove histograms when
evaluating continuous split-points in the
next pass.

2.4 Comparison with SLIQ

The technique of creating separate attribute
lists from the original data was first
proposed by the SLIQ algorithm [15]. In
SLIQ, an entry in an attribute list consists
only of an attribute value and a rid; the class
labels are kept in a separate data-structure
called a class list which is indexed by rid. In
addition to the class label, an entry in the
class list also contains a pointer to a node of
the classification tree which indicates to
which node the corresponding data record
currently belongs. Finally, there is only one
list for each attribute. Figure 7 illustrates
these data structures.

The advantage of not having separate sets of
attribute lists for each node is that SLIQ
does not have to rewrite these lists during a
split. Reassignment of records to new nodes
is done simply by changing the tree-pointer
field of the corresponding class-list entry.
Since the class list is randomly accessed and
frequently updated, it must stay in memory
all the time or suffer severe performance
degradations. The size of this list also grows
in direct proportion to the training-set size.
This ultimately limits the size of the training
set that SLIQ can handle.

Our goal in designing SPRINT was not to
outperform SLIQ on datasets where a class

list can fit in memory. Rather, the purpose
of our algorithm is to develop an accurate
classifier for datasets that are simply too
large for any other algorithm, and to be able
to develop such a classifier efficiently. Also,
SPRINT is designed to be easily
parallelizable as we will see in the next
section.

3 Parallelizing Classification

We now turn to the problem of building
classification trees in parallel. We again
focus only on the growth phase due to its
data-intensive nature. The pruning phase
can easily be done off-line on a serial
processor as it is computationally
inexpensive, and requires access to only the
decision-tree grown in the training phase.

In parallel tree-growth, the primary
problems remain finding good split-points
and partitioning the data wusing the
discovered split points. As in any parallel
algorithm, there are also issues of data
placement and workload balancing that
must Dbe considered. Fortunately, these
Issues are easily resolved in the SPRINT
algorithm. SPRINT was specifically
designed to remove any dependence on data
structures that are either centralized or
memory-resident; because of these design
goals, SPRINT parallelizes quite naturally
and efficiently. In this section we will
present how we parallelize SPRINT. For
comparison, we also discuss two
parallelizations of SLIQ.

These algorithms all assume a shared-
nothing parallel environment where each of
N processors has private memory and disks.
The processors are connected by a
communication network and can
communicate only by passing messages.
Examples of such parallel machines include
GAMMA [7], Teradata [23], and IBM’s
SP2 [12].

3.1 Data Placement and Workload
Balancing

Recall that the main data structures used in
SPRINT are the attribute lists and the class
histograms. SPRINT achieves uniform data
placement and workload balancing by
distributing the attribute lists evenly over N
processors of a shared-nothing machine.
This allows each processor to work on only
1/AT of the total data.

The partitioning is achieved by first
distributing the training-set examples
equally among all the processors. Each
processor then generates its own attribute-
list partitions in parallel by projecting out
each attribute from training-set examples it
was assigned. Lists for categorical attributes
are therefore evenly partitioned and require
no further processing. However, continuous
attribute lists must now be sorted and
repartitioned into contiguous sorted
sections. For this, we use the parallel sorting

algorithm given in [8]. The result of this
sorting operation is that each processor gets
a fairly equal-sized sorted sections of each
attribute list. Figure 3 shows an example of
the initial distribution of the lists for a 2-
processor configuration.

3.2 Finding split points

Finding split points in parallel SPRINT is
very similar to the serial algorithm. In the
serial version, processors scan the attribute
lists either evaluating split- points for
continuous attributes or collecting
distribution counts for categorical attributes.
This does not change in the parallel
algorithm — no extra work or
communication is required while each
processor is scanning its attribute-list
partitions. We get the full advantage of
having N processors simultaneously and

Figure 8: Parallel Data Placement

independently processing 1/N of the total
data. The differences between the serial and
parallel algorithms appear only before and
after the attribute-list partitions are scanned.

Continuous attributes
For continuous attributes, the parallel
version of SPRINT differs from the serial

version in how it initializes the Cbeiow and
Cabove class-histograms. In a parallel
environment, each processor has a separate
contiguous section of a ‘“global” attribute
list. Thus, a processor’s Cbeiow and Cabove
histograms must be initialized to reflect the
fact that there are sections of the attribute
list on other processors. Specifically,
Cbeiow must initially reflect the class
distribution of all sections of an attribute-list
assigned to processors of lower rank. The
Cabove histograms must likewise initially
reflect the class distribution of the local
section as well as all sections assigned to
processors of higher rank. As in the serial
version, these statistics are gathered when
attribute lists for new leaves are created.
After collecting statistics, the information is
exchanged between all the processors and
stored with each leaf, where it is later used
to initialize that leaf’s Cabove and Cbeiow
clsss histograms.

Once all the attribute-list sections of a leaf
have been processed, each processor will
have what it considers to be the best split for
that leaf. The processors then communicate
to determine which of the N split points has
the lowest cost.

Categorical attributes

For categorical attributes, the difference
between the serial and parallel versions
arises after an attribute-list section has been
scanned to build the count matrix for a leaf.
Since the count matrix built by each
processor is based on “local” information
only, we must exchange these matrices to

get the “global” counts. This is done by
choosing a coordinator to collect the count
matrices from each processor. The
coordinator process then sums the local
matrices to get the global count-matrix.

As in the serial algorithm, the global matrix
Is used to find the best split for each
categorical attribute.

3.3 Performing the Splits

Having determined the winning split points,
splitting the attribute lists for each leaf is
nearly identical to the serial algorithm with
each processor responsible for splitting its
own attribute-list partitions. The only
additional step is that before building the
probe structure, we will need to collect rids
from all the processors. (Recall that a
processor can have attribute records
belonging to any leaf.) Thus, after
partitioning the list of a leaf’s splitting
attribute, the rids collected during the scan
are exchanged with all other processors.
After the exchange, each processor
continues independently, constructing a
probe-structure with all the rids and using it
to split the leaf’s remaining attribute lists.

No further work is needed to parallelize the
SPRINT algorithm. Because of its design,
SPRINT does not require a complex
parallelizatiori and, as we will see in

Section 4.3, scales quite nicely.

3.4 Parallelizing SLIQ

The attribute lists used in SLIQ can be
partitioned evenly across multiple
processors as is done in parallel SPRINT.
However, the parallelization of SLIQ is
complicated by its use of a centralized,
memory-resident data-structure — the class
list. Because the class list requires random
access and frequent updating, parallel
algorithms based on SLIQ require that the
class list be kept memory-resident. This
leads us to two primary approaches for
parallelizing SLIQ : one where the class list
is replicated in the memory of every
processor, and the other where it is
distributed such that each processor’s
memory holds only a portion of the entire
list.

3.4.1 Replicated Class List

In the first approach, which we call SLIQ/R,
the class list for the entire training set is
replicated in the local memory of every
processor. Split-points are evaluated in the
same manner as in parallel SPRINT, by
exchanging count matrices and properly
initializing the class histograms. However,
the partitioning of attribute lists according
to a chosen split point is different.

Performing the splits requires updating the
class list for each training example. Since
every processor must maintain a consistent

copy of the entire class list, every class-list
update must be communicated to and
applied by every processor. Thus, the time
for this part of tree growth will increase
with the size of the training set, even if the
amount of data at each node remains fixed.

Although SLIQ/R parallelizes split-point
evaluation and class-list updates, it suffers
from the same drawback as SLIQ — the
size of the training set is limited by the
memory size of a single processor. Since
each processor has a full copy of the class
list, SLIQ/R can efficiently process a
training set only if the class list for the
entire database can fit in the memory of
every processor. This is true regardless of
the number of processors used.

3.4.2 Distributed Class List

Our second approach to parallelizing SLIQ,
called SLIQ/D, helps to relieve SLIQ’s
memory constraints by partitioning the class
list over the multiprocessor. Each -
processor therefore contains only 1/Nth of
the class list. Note that the partitioning of
the class list has no correlation with the
partitioning of the continuous attribute lists;
the class label corresponding to an attribute
value could reside on a different processor.
This implies that communication is required
to look up a “non-local” class label. Since
the class list is created from the original
partitioned training-set, it will be perfectly
correlated with categorical attribute lists.
Thus, communication is only required for
continuous attributes.

Given this scenario, SLIQ/D has high
communication costs while evaluating
continuous split points. As each attribute list
Is scanned, we need to look-up the
corresponding class label and tree-pointer
for each at-tribute value. This implies that
each processor will require communication
for N — 1/N of its data. Also, each
processor will have to service lookup
requests from other processors in the middle
of scanning its attribute lists. Although our
SLIQ/D implementation reduces the
communication costs by batching the
lookups to the class lists, the extra
computation that each processor performs in
requesting and servicing remote look-ups to
the class list is still high. SLIQ/D also incurs
similar communication costs when the class
list is updated while partitioning the data
using the best splits found.

4 Performance Evaluation

The primary metric for evaluating classifier
performance is classification accuracy —
the percentage of test samples that are
correctly classified. The other important
metrics are classification time and the size
of the decision tree. The ideal goal for a
decision tree classifier is to produce
compact, accurate trees in a short
classification time.

Although the data structures and how a tree
Is grown are very different in SPRINT and
SLIQ, they consider the same types of splits
at every node and use identical splitting
index (gini index). The two algorithms,
therefore, produce identical trees for a given
dataset (provided SLIQ can handle the
dataset). Since SPRINT wuses SLIQ’s
pruning method, the final trees obtained
using the two algorithms are also identical.
Thus, the accuracy and tree size
characteristics of SPRINT are identical to
SLIQ. A detailed comparison of SLIQ’s
accuracy, execution time, and tree size with
those of CART [3] and C4 (a predecessor of
C45[20]) is available in [15]. This
performance evaluation shows that
compared to other classifiers, SLIQ
achieves comparable or better classification
accuracy, but produces small decision trees
and has small execution times. We,
therefore, focus only on the classification
time metric in our performance evaluation
in this paper.

4.1 Datasets

An often used benchmark in classification is
STATLOG]J16]; however, its largest dataset
contains only 57,000 training examples.
Due to the lack of a classification
benchmark containing large datasets, we use
the synthetic database proposed in [2] for all
of our experiments. Each record in this
synthetic database consists of nine attributes
four of which are shown in Table 1. Ten
classification functions were also proposed
in [2] to produce databases with
distributions with varying complexities. In

this paper, we present results for two of
these function. Function 2 results in fairly
small decision trees, while function 7
produces very large trees. Both these
functions divide the database into two
classes: Group A and Group B. Figure 9
shows the predicates for Group A are shown
for each function.

Function 2 - Group A:

((age < 40) A (50K < salary < 100#)) V ((40
< age < 60) A (75K < salary > 125AT)) V
((age > 60) A (25K < salary < 75K))

Function 7 - Group A: disposable > 0

where disposable = (0.67 x (salary +
commission)) — (0.2 x loan — 20K)

Figure 9: Classification Functions for
Synthetic Data

Table 1: Description of Attributes for
Synthetic Data

Figure 10: Response times for serial
algorithms

4.2 Serial Performance

For our serial analysis, we compare the
response times of serial SPRINT and SLIQ
on training sets of various sizes. We only
compare our algorithm with SLIQ because
Is has been shown in [15] that SLIQ in most
cases outperforms other popular decision-
tree classifiers. For the disk-resident
datasets which we will be exploring here,
SLIQ is the only other viable algorithm.

Experiments were conducted on an IBM
RS/6000 250 workstation running AlX level
3.2.5. The CPU has a clock rate of 66MHz
and 16MB of main memory. Apart from the
standard UNIX daemons and system
processes, experiments were run on an idle
system.

We used training sets ranging in size from
10,000 records to 2.5 million records. This
range was selected to examine how well
SPRINT performs in operating regions
where SLIQ can and cannot run. The results
are shown in Figure 10 on databases
generated using function 2.

The results are very encouraging. As
expected, for data sizes for which the class
list could fit in memory, SPRINT is
somewhat slower than SLIQ. In this
operating region, we are pitting SPRINT’s
rewriting of the dataset to SLIQ’s in-
memory updates to the class list. What is
surprising is that even in this region
SPRINT comes quite close to SLIQ.
However, as soon as we cross an input size
threshold (about 1.5 million records for our
system configuration), SLIQ starts
thrashing, whereas SPRINT continues to
exhibit a nearly linear scaleup.

4.3 Parallel Performance

To examine how well the SPRINT
algorithm performs in parallel
environments, we implemented its
parallelization on an IBM SP2 [12], using
the standard MPI communication primitives
[10]. The wuse of MPI allows our
implementation to be completely portable to
other

Figure 11: Response times for parallel
algorithms

shared-nothing parallel architectures,
including work-station clusters.
Experiments were conducted on a 16-node
IBM SP2 Model 9076. Each node in the
multiprocessor is a 370 Node consisting of a
POWER1 processor running at 62.5MHZ
with 128MB of real memory. Attached to
each node is a 100MB disk on which we
stored our datasets. The processors all run
AlIX level 4.1 and communicate with each
other through the High-Performance-Switch
with HPS-tb2 adaptors. See [12] for SP2
hardware details.

Due to the available disk space being
smaller than the available memory, we are
prevented from running any experiments
where attribute lists are forced to disk. This
results in 1/0O costs, which scale linearly in
SPRINT, becoming a smaller fraction of the
overall execution time. Any other costs that
may not scale well will thus be exaggerated.

4.3.1 Comparison of Parallel Algorithms

We first compare parallel SPRINT to the
two paral- lelizations of SLIQ. In these
experiments, each processor contained
50,000 training examples and the number of
processors varied from 2 to 16. The total
training-set size thus ranges from 100,000
records to 1.6 million records. The response
times for each algorithm are shown in
Figure 11. To get a more detailed
understanding of each algorithm’s
performance, we show in Figure 12 a
breakdown of total response time into time
spent discovering split points and time spent
partitioning the data using the split points.

Immediately obvious is how poorly SLIQ/D
performs relative to both SLIQ/R and
SPRINT. The communication costs of using
a distributed class-list and time spent
servicing class-list requests from other
processors are extremely high — so much
so that SLIQ/D will probably never be an
attractive algorithm despite its ability to
handle training sets that are too large for
either SLIQ and SLIQ/R. As shown in
Figure 12, SLIQ/D pays this high penalty in
both components of tree growth (i.e. split-
point discovery and data partitioning) and
scales quite poorly.

SPRINT performs much better than
SLIQ/R, both in terms of response times
and scalability. For both algorithms, finding

the best split points takes roughly constant
time, because the amount of data on each
processor remains fixed as the problem size
Is increased. The increase in response times
Is from time spent partitioning the data.
SPRINT shows a slight increase because of
the cost of building the rid hash- tables used
to split the attribute lists. Since these hash-
tables may potentially contain the rids of all
the tuples belonging to a particular leaf-
node, this cost increases with the data size.
SLIQ/R performs worse than SPRINT,
because each processor in SLIQ/R must not
only communicate but also apply class-list
updates for every training example. As the
problem size increase, so do the number of
updates each processor must perform. While
SPRINT may perform as much
communication as SLIQ/R, it only requires
pro-cessors to update their own local
records.

The rest of this section examines the
scalability, speedup, and sizeup
characteristics of SPRINT in greater detail.

4.3.2 Scaleup

For our first set of sensitivity experiments,
each processor has a fixed number of
training examples and we examined
SPRINT’s performance as the configuration
changed from 2 to 16 processors. We
studied three of these scaleup experiments,
with 10, 50 and 100 thousand examples on

each processor. The results of these runs are
shown in Figure 13. Since the amount of
data per processor does not change for a
given experiment, the response times should
ideally remain constant as the configuration
size is increased.

The results show nice scaleup. The drop in
scaleup is due to the time needed to build
SPRINT’s rid hash- tables. While the
amount of local data on each processor
remains constant, the size of these hash-
tables does not. The rid hash-tables grow in
direct proportion to the total training-set
size. Overall, we can conclude that parallel
SPRINT can indeed be used to classify very
large datasets.

4.3.3 Speedup

Next, we examined the speedup
characteristics of SPRINT. We kept the total
training set constant and changed the
processor configuration. We did this for
training-set sizes of 800 thousand and 1.6
million examples. Results for these speedup
experiments are shown in Figure 14. Due to
limited disk space, the 2-processor
configuration could not create the dataset
containing the 1.6 million examples. As can
be expected, speedup performance improves
with larger datasets. For small datasets,
communication becomes a significant factor
of the overall response time. This is
especially true as the configuration sizes are
increased to the point where there are only a
few tens of thousand examples on each
processor. Another factor limiting speedup
performance is the rid hash-tables. These
hash tables have the same size regardless of

the processor configuration. Building these
hash-tables thus requires a constant amount
of time whether we are using 2 or 16
processors. These experiments show that we
do get nice speed-up with SPRINT, with the
results improving for larger datasets.

4.3.4 Sizeup

In sizeup experiments, we examine how
SPRINT performs on a fixed processor
configuration as we increase the size of the
dataset. Figure 15 shows this for three
different processor configurations where the
per- processor training-set size is increased
from 10 thousand to 100 thousand
examples. SPRINT exhibits sizeup results
better than ideal — processing twice as
much data does not require twice as much
processing time. The reason is that
communication costs for exchanging split
points and count matrices does not change
as the training-set size is increased. Thus,
while doubling the training-set size doubles
most of the response costs, others remain
unaffected. The result is superior sizeup
performance.

5 Conclusion

With the recent emergence of the field of
data mining, there is a great need for
algorithms for building classifiers that can
handle very large databases. The recently
proposed SLIQ algorithm was the first to

5 Két luan

Vi sy ndi 18n gan ddy cia linh vuc khai
thac dir liéu, chung ta dang rat can cac
thuat toan xay dung cac chuong trinh

address these concerns. Unfortunately, due
to the use of a memory-resident data
structure that scales with the size of the
training set, even SLIQ has an upper limit
on the number of records it can process.

In this paper, we presented a new
classification al-gorithm called SPRINT that
removes all memory re-strictions that limit
existing decision-tree algorithms, and yet
exhibits the same excellent scaling behavior
as SLIQ. By eschewing the need for any
centralized, memory-resident data
structures, SPRINT efficiently allows
classification of virtually any sized dataset.
Our design goals also included the
requirement that the algorithm be easily and
efficiently parallelizable. SPRINT does
have an efficient parallelization that requires
very few additions to the serial algorithm.

Using measurements ~ from actual
implementations of these algorithms, we
showed that SPRINT is an attractive
algorithm in both serial and parallel
environments. On a uniprocessor, SPRINT
exhibits execution times that compete
favorably with SLIQ. We also showed that
SPRINT handles datasets that are too large
for SLIQ to handle. Moreover, SPRINT
scales nicely with the size of the dataset,
even into the large problem regions where
no other decision-tree classifier can
compete.

phan loai c6 thé xu ly nhitng tap dir liéu
cuc lon. Cac thuat toan SLIQ duoc dé
Xuat gan day 1a nhiing thuat toan dau tién
c6 kha nang giai quyét nhitng van dé nay.
Tuy nhién, do viéc sir dung mot cau trdc
dir liéu thuong trd trong bo nhé tang theo
kich thudc cua tap hoc, SLIQ chi cé kha
ning xir Iy mot sé luong ban ghi gisi han.

Trong bai bao nay, chung téi da trinh bay
mot thuat toan phan loai mai duoc goi la
SPRINT loai bé tat ca cac rang budc vé
bé nhg, mot nhuge diém cua cac thuat
toan cay quyét dinh hién tai, nhung lai c6
kha nang mé& rong tuyét voi nhu SLIQ. Vi
khéng can nhiing cau tric di liéu tap
trung, thuong tra trong bo nhd, SPRINT
cho phép phan loai hiéu qua bat ky tap di
lisu & kich thudc nao. Muc tiéu thiét ké
ctia chung t6i ciing tinh dén viéc tao diéu
kién dé dang dé song song hda thuat toan.
SPRINT cé mét qué trinh song song hoa
hiéu qua can rat it sy bd sung vao thuat
toan néi tiép.

Str dung cac phép do tir viéc thuc thi thuc
té nhirng thuat toan nay, ching toi ching
t6 rang SPRINT la mot thuat toan co
nhiéu vu diém trong ca moi truong ndi
tiép va song song. Trén mot bo xir 1y don,
SPRINT c0 thoi gian thyc thi hoan toan
t5t hon so voi SLIQ. Chung tdi ciing
chang t6 rang SPRINT ¢6 kha ning xir ly
nhitng tap di liéu qué Ion so vaoi kha nang
xu ly cua SLIQ. Hon nira, SPRINT c0
kha nang mé rong tot theo kich thudce tap
dir liéu, tham chi thanh nhirng vung bai
toan lon trong d6 nhitng chuong trinh
phan loai cay quyét dinh khac khong thé

Our implementation on SP2, a shared-
nothing mul-tiprocessor, showed that
SPRINT does indeed parallelize efficiently.
It outperforms our two parallel im-
plementations of SLIQ in terms of
execution time and scalability. Parallel
SPRINT’s efficiency improves as the
problem size increases. It has excellent
scaleup, speedup, and sizeup characteristics.

Given SLIQ’s somewhat superior
performance in problem regions where a
class list can fit in memory, one can
envision a hybrid algorithm combining
SPRINT and SLIQ . The algorithm would
initially run SPRINT until a point is reached
where a class list could be constructed and
kept in real memory. At this point, the
algorithm would switch over from SPRINT
to SLIQ exploiting the advantages of each
algorithm in the operating regions for which
they were intended. Since the amount of
memory needed to build a class list is easily
calculated, the switch over point would not
be difficult to determine. We plan to build
such a hybrid algorithm in future.

canh tranh.

Khi trién khai trén SP2, mot bo da xir ly
khéng chia sé, ching tdi thay ring thuc ra
SPRINT song song hoa c6 hiéu qua. N6
vuot tro1 hon hai phuong phap song song
cua SLIQ V& thoi gian thuc thi va kha
ndng m& rong. SPRINT song song cling
cal thién cO hiéu qua khi kich thudc bai
toan tang. NO cO kha nang mé rong, ting
téc va kha ning tang kich thudc tét.

Pé SLIQ cb thé dat hiéu suat tuong doi
tét trong nhitng ving bai todn ma danh
sach 16p vira van trong bo nhd, ching ta
c6 thé sir dung mot thuat toan lai hoa két
hop gitta SPRINT va SLIQ. Ban dau
thuat toan s& chay SPRINT cho dén diém
c6 thé xay dung va giit danh sach 16p
trong b6 nhé thuc. Vao luc do, thuat toan
s& chuyén tir SPRINT sang SLIQ dé tan
dung nhimg wu diém cua mdi thuat toan
khi hoat dong trong nhirng vung duogc
thiét ké cho nd. Bgi vi ching ta c6 thé
tinh toan dé dang dung luong b nhé can
thiét ¢é xay dung mot danh sach 16p, s&
khong khé dé xac dinh diém chuyén.
Chung toi da 1én ké hoach dé xay dung
mot thuat toan lai hoa nhu thé trong
tuong lai.

