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and if wM; ¢ Mf for one of the Mu then wMIM2 e m * M,. c MIMZ m * m Mr.
We shall use these remarks and Lemma 1 to prove checked 18/2

va néu wM; c M; dbi voi mot trong cac M; thi wM M, ...M; c
MM, ....M;. Ching ta s& dung nhitng tinh chat nay va B6 d& 1 dé chung
minh

THEOREM 4.23. If E is afield and R is a subring of E, the set A of R-
integral elements of E is a subring of E containing R. Moreover, any element
of E which is A-integral is R-integral (and so is contained in A).

Pinh Iy 4.23. Néu E 1a mot truong va R 1a mot vanh con cua E, tap hop A
cac phan tir R-nguyén cua E 1a mot vanh con cia E chia R. Hon nita, bat ky
phan tir nao cua E l1a A-nguyén ciing 1a R-nguyén (va vi vay s& nim trong
A).

Proof. Let u and v e A so that there exist finitely generated ~-submodules M
and N of E containing 1 such that uM ¢ M and vN cz ]V. Then (u + v)MN
<= u(MN) + v(MN) <= MN. Also (uv)MN ¢ MN. Since 1 e MN the
conditions of Lemma 1 are satisfied for u + v, 1 and uv. Hence these
elements are R-integral and A is thus a subring of E. It is clear also that A R.
Now let u be A-integral. Then we have an M = An, + ¢ * » + Au,, containing
1 and satisfying uM ¢ M. We may as well assume ut = 1. Since uM ¢ M
there exist e A such that uui = £ afjiij. Now there exists a finitely generated
i?-submodule jVy such that aijNfj ¢ NfJ and 1 e N;j. Multiplying together
the Ntj we obtain a finitely generated module N = Rv+ + m m m + Rvm with
vl = 1 satisfying atjN <= N for every av. Let P = Ru,Vj. Then | = ulVisP
and u(UiVk) = ]T a{jUjVk — £ ufiijVk. Since ai:ivk e N tins is an R-linear
combination of the elements UjVK. It follows that uP <= P, and so u is R-
integral, by Lemma 1, o



Proof. Let v and v = 4 so that there exis
and ¥ of E containing 1 such that M — M and N = N, The T '
Jr.-{."hh"n.’:l -Ii HMN = MN. Alsg )N = MN. Since | :E .‘I;f-"-’ :E:: ;J;I'ITE:E?L: {Tf

cmma | are satisfied for o + o, 1 and g c elem - ]

and A s thus a subring of £, It is clear also Ei:l{: !:ﬂﬂ?n P‘:';E"-[‘:r‘i EII:::E f'_“‘:mﬂfﬂi'
Eu:n a.me I1.-m: .Em M = Au; + - -|:.=1u,. contaiping | and satiafying.uﬂfzgl.:-:‘.l

e MLy it well assume wy = 1. Since uld = A there exist a2 4 such that
rm:: }_. .:T?J.-I-. Mow :h-:p: 1::-:i:-il.~:_:s finitely senerated E-Huhn]udulf::_.ﬁr' such 1I1;1t
Fyl¥ip = Ny and 1 e N, Multiplying together the N, we ubtainlra finitely
eeneraled module N = Rey 4+ - 4 Eu, with p, = 1 :Hi-‘.t'ying N = W T .
BVECY i, .[J:[ F=£i_j R, Then 1 = h',l.-‘:'i::.P anil I..-[|.I-ujl=l{'lrr:| o
¥ Uity Simce a0, & N this is an RB-linear combination of Illa:; -:I!.:ﬁ:.

It follows that wP = P, and sa y is R-integral, by Lemma . [

| finitely generated R-submodules A

il =
eots wa,.

Chtrng minh. Gia str u va v € A4 sao cho ton tai cdc R-m6-dun con duoc sinh
hitu han M va N cua E chira [l sao cho uM c M va vN c N. Thé thi
(u+ v)MN c u(MN) + v(MN) € MN. Tuong tu (uv)MN < MN. Béi vi
BB :c dicu kien cua BS Bé 1 dugc thoa man dbi véi u + v, [l va uv.
Vi thé, nhitng phan ta nay 1a R-nguyén va vi thé A 1a mot vanh con cua E.
Chung ta ciing dé dang thiy ring A o R. Bay gid gia sir u 13 A-nguyén. Thé
thi ching ta c6 mot M D Auy + -+ Au,, chia |l va thoa man uM c M.
Chiing ta ciing c6 thé gia sir u; = | Boi vi uM < M tdn tai a;; € A sao cho
uu; = Y, a;;M;. Bdy gio, ton tai mot R-md-dun con dugc sinh hitu han N;;
sao cho a;;N;; € N;j va 1 € N;;. Clng nhan véi N;; ching ta thu dugc mét
mo-dun dugc sinh hitru han N = Rv; + ---. +Rv,, cung vadi v; = 1 théa man
a;jN c N doi véi mdi a;;. Dat ¥;;Ru;v; . Thé thi 1=wv; €P VA
u(wug) = X a;juju, = Y u;a;;vg). Béivi a;jv, € N day la R-t6 hop tuyén
cua cac phan tir u;v,. Suy rarang uP C P, va vi vay u la R-nguyén, theo Bo
bél,o

In the case in which R = F is a subfield this result states that the elements of
E which are algebraic over F constitute a subring. Moreover, in this case, if u
Is algebraic, then F(u) = -F[w]> an<i 1,1 is therefore algebraic for u ~ 0.
Hence the set of elements of E which are algebraic over F constitute a
subfield A of E and every element of E which is algebraic over A is
contained in A.



In the case in which R = Fis a subfield this result stales that the elements of
E which are algchraic over conslitute a subring, Moreover, in this case, if o
is algebraic, then Fy) - Flul. and 4% is therefore algebraic for o « 0, Hence
the set of elements of E which are algebraic over F constitute a subfield A of
E und every element of F which is algebraic aver 4 js contained in A4

We now specialize £ = Cand B = 0 or #. Then the U-infegers are the alge-
braic numbers and the £-inlegers are algebraic integers. We have the following
criterion for a complex number to be an alpebraic Imteger:




Progf. IMae £ itis £-integral. On the other hand, if @ e © its minimum poly-
nomial over O §s x — o, 50 10 a is an algebraic integer then a e Z. MNow let 5 e O

be algebraic over Uand let flx)=x"+ a2 Lo 42 e O[x] be a poly-
nomial such that fw) =0.10b = Z, 5 0, then b is a root of B¥(b ™ 'x) = 0 and
L B e [ e T S SRS dh= " by x e B

If owe choose b to be the prodiuct of the denominators of the rational
numbers ¢ wo obtain a monic polynemial in 2] x] having ber as a root. Then
bir is an algebraie integer, [



We shall need to use the so-called fundamental theorem of algebra, which
states that any polynomial in C[x] of positive degree has a root in C. This
result, which will be proved in section 5.1, implies that every monic polynomial
of positive degree with cocfficients in C factors as a product [T{x —r)in Cfx].
In other words, C contains a splitting field for every monic polynomial #1 in

C[x]. It follows that if S is a finite set of algebraic numbers we can imbed (s)
in a Galois extension K/O < €.




the ficld of algebraic numbers 4 and its additive group, we now denote the
latter as 4’ and its elements as «', where ¥ — ' is an isomorphism of (4, +, 0)
onto A". We write the composition in 4' as multiplication. Then a —a' is 1-1
and a'b’ = (a + b)Y, 0 is the unit of 4’ and ( —a)’ is the inverse of ¢'. The group
algebra A[ 4] we are interested in, is the set of sums Y v, v,€ A, uie A,
where addition is the obvious one, and multiplication is given by the distributive
law, and (v u))(vau5) = vy0,(0, + u,). Moreover, if w,,...,u, are distinct
elements of 4, then the elements u|, u), . . ., i, are linearly independent over
A: that is, ) vui = 0 for v; € A implies that every v; = (. Now, in C we have
e"le" = "1 "2 Hence, by the “universal” property of group algebras given in
cxercise 8, p. 127, we have a homomorphism ¢ of A[A'] into C sending Y vl
into ) #e", Theorem 4.22 can now be restated as: ¢ is a monomorphism.

=y
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The group algebra A[A4'] is commutative. We shall now show that it 15 a
domain. To see this we introduce an ordering in C which is compatible with
addition, the so-called lexicographic ordering of C. If x = a + biand y = ¢ + di
where a, b, ¢, d are real, then we say that x > yita>corifa=cand b > d.
This ordering satisfies the trichotomy law: for any pair (x, y)either x > y, x =y,
or y > x. Moreover, if x>y and z >t then x + z > y + ¢. Now let M4 v,

1 Zjt; be two non-zero elements of A[ 4. Then we may assume that v, # 0,
2y #0, and u; > uy >, £ >ty > > tw- Then (3 eai)(} z,t) =
v124(uy + £;) + a sum of terms of the form wq' where g < u, + t,. Clearly this
is not zero, so A[ A7 is a domain.




Suppose » vu; € ker &. We can imbed the u; and v; in a Galois subfield K/Q
of C. Then the subset of elements of the form > x.; with x,, ¥; € K is a subring
K[K'] of A[A"], and if € G = Gal K/Q, then it defines two automorphisms
in K[K"]. The first of these, which we shall denote as a({n), is Z X =3 0y,
and the second is (7): Y x;3 — Y x(#(y)). The fact that these are automor-
phisms is clear. Now suppose Y v} # 0. Then if G = M H2s -, ) every
a(n)(3 var) # 0 and hence




-
[
-
ey

Since U contains the factor ¥ o}, U € ker ¢. It is clear from the commutativity
of A[A'] that a(q)U = U for every 5 = i, € G. Hence if we write U as Yzt
with distinct ¢}, then yU = U, that is, Y nlzt, = y z;t;, implies niz;) = z; for
every z; and every y € G. Then z, € @ = Inv G. We have therefore shown that
if we have a non-zero element in ker ¢ then we have one of the form > v with
rational v,. Now apply t(n;) to this element and form

Then this 1s a non-zero element of ker ¢ satislfying t(y)V = V for all n € G. We
can write ¥ = ) z;t; where the z;€ @ and we have Y z(n(t)) =Y ztl, n € G.
We now average these various expressions for V to obtain




We have now shown that ker & # 0 implies that we have a non-zero element
in ker & of the form } v, T'(t;) where the v; € Q. Also, by combining terms we
may assume that T°(t;) # T'(t;) for i # j, which implies that t; # n(t;) for every
e G.

This relation shows that if » v, T'(t,) € ker ¢ with v, e Q, v, # 0, and £ # nit)
for every i #j and # € G, then multiplication by T'(—t,) gives an element in
ker ¢ of the form




with v; € @, vy # 0, u; £ 0. Multiplication by a suitable integer allows us to

assume the v; are integers, The fact that (64) € ker ¢ implies that we have the
relation (63),

So far the argument has been purely algebraic. We now come to the analytic
part of the proof, which will consist of establishin £ a contradiction to a rela-
tion of the form (63) where the v; are integers, v, # 0, and
numbers #0. We assume that all the i; and |
nomial f{x) =}

the u; are algebraic
1ence all y(u,) are roots of a poly-
o axx" € Z[x], ag # 0. Let p be a prime and introduce

where s =tp + p — 1. Then the bieZ, b,

-1 =dp" and for p—- 1 <j< s we
have



It is understood here that the first bracket is 0 il j =
J! j) L : !
then ——— = p! 50 this is p! times an intege ortiori, 7— j —
G p (P p €s an nteger. A fortiori, L OD<k<j

o

is p! times an integer and hence the first bracket in (65)
polynomial. Now put

p — 1. Moreover, if j > 3

2,

is p! times an integral

where g,(x) e Z[x]. We observe next that

and these are all divisible by f(x) since h(x) = x?71f(x)P. Hence the first sum-
mation in (67), which is I'(x) + h"(x) + - - - + "~ Y(x), is divisible by f(x) and
this becomes 0 when we put x = ;. Next we need to estimate |R(u;)| where
R(x) is the second summation in (67). We now assume that the prime p is chosen
so that p > 2|uy| for all u;. Then since j + 1 = p also, we have




if M is the largest of the 2n numbers 37 |ay|[uf* and ¥ o u]*** for i =
1,2,...,n Hence if p > 2Ju then we have

Moreover, if in addition p > |ay|, then N »» which is given by (66), is not divisible
by p since N, =b,_, = a,* = a, (mod p.) We therefore have the following

LEMMA 3. Let u;, 1 < i< n, be non-zero algebraic numbers, fix) =Y axbe
Z[x], ag # 0, be a polynomial such that f(u;) = 0 forall i, Let M be the maximum
of the 2n numbers ) - |ay|[u]* and Yoo |a|uf*** and let p be a prime >
max ((@of, 2Jus, . . ., 2|u|). Then there exists an integer N o not divisible by p and
a polynomial g,(x) € Z[x] of degree < tp such that the inequalities (68) hold.'*




uuuuuuuuu

as in Lemma 3. The numbers i ,(u,), i€ G = Gal K/Q, are also roots of f{x).
Hence, by Lemma 3, for all sufficiently large primes p there ¢Xists an integer
N, not divisible by p and an integral polynomial gplx) of degree
deg f, such that |V ettt Pg () < 2M
J=L...,r(=|G). Now let k be a positive inte
integer for every u; and every | < +. The existence of such a k is assured by

Theorem 4.24. Then kg, () is an algebraic integer and hence every kg (n(u;)) is
an algebraic integer. Also pJ kP, (i) is an algebraic integer, but
it is fixed by G, it is a rational number, Hence this
4.23.

Now we have

<pt, t =
e —1) for all i=1,. .. M,
ger such that ku;' is an algebraic

since
is an integer, by Theorem




where M is as before and L is a positive upper bound for the I, 1 <i<n The
numbers pkPu, 3 gn(u)) are integers divisible by p whereas N, is not.
Moreover, if p is sufficiently large then pfk and pfvy so pfk"v,. Hence the
left-hand side of the inequality




1. Show that sin u is transcendental for all alpebraic u # 0. (Hint: Use sin u =
(1/2i){e" — e~ ™) and the transcendence of &™)

2. Show that cscu, cosu, secu, tan i, cot v are transcendental for any algebraic
w7

=

Let i be an 1nteger without square factors and let F = O/ m} the subfield of II_,
generated by «/m. Show that F is the set of complex numbers of the form a + bafm
where a, b€ (). Let I be the subset of F of integral algebraic numbers. Show that

T'is a subring of C and 1 is the set of elements a + b./m where a and b are rational
numbers such that







We shall now apply the results of Galois theory to derive the main facts about
finite fields. We observe first that if F is a finite field then |F| = p" for some
prime p. To begin with we know that the prime field of F can be identified with
a field Z/(p) of residues modulo p for some prime p. We may now regard F as
a vector space over Z/(p) in the usual way. Clearly [F:Z/(p)] is finite and if
[F:Z/(p)] = n, then we have a base (uy, 1y, . .., u,) for FAZ{p)), and every
element of F can be written in one and only one way as a linear combination
@iy + axity + 0+ ayu,, a; € #{(p). Evidently, this implies that |F| = p". The
same method shows that if ES F, [E:F] = n, and |F| = g < oo then |E| = g".

The basic facts on finite fields can now be derived very quickly. We have first




X'~ x in F. We observe first that since (xT — x) = —1, x¥ — x has g distinct
roots in F. Next we shall show that R — Ty, u,, . Uy} is a subfield of F, For,

using the nice binomial theorem (@ + b)F = a® + b” for characteristic P, we see

that for any i and s tu)f=uf+ Ut =, + u;. Hence u, + ;e R. Also

I € R and (uu)? = wifui = wa; e R, and if y, 0, then (1, 1)7 = ()"t =y, 71,
These results show that R is a subfield of F. Then R contains the prime field
Pand R = P(R)=F,




Next let F aﬁd F" be two fields such that

[F| = g = |F|. Clearly this implies
that both F and F' are extensions of P = 7/(p). Let F* be the set of non-zero

elements of F, so that F* is a group under multiplication and [F¥ =g —1.
Hence if u # 0in F then u® ! = | and 49 — u. Since the last relation holds also
for u =0, we see that every clement of F is a root of x?
tion has no more than g distinet roots in any field it
ting field over P of x? — x. The same is true of I,
theorem for splitting fields (Theorem 4.4, p.
isomorphic. []

— X. Since this equa-
is clear that F is a split--
Hence the isomorphism
227) implies that F and F' are

We shall now consider the relative theory of finite fields, that 15, we want to
study a finite field relative to a subfield. Let \F| = g(=p™ and let E be an ex-
tension field of F with [E :F] = n. Then, as we saw before, £ = ¢". We have
scen also that o — a” is an automorphism of F (section 4.4). Hence 5:q — g¢

is an automorphism of E. Moreover, since [F[ =q, 0" = b for b e F. Hence HE
Gal E/F. We now have




Proof.  We show first that the order o(if) = n. For, IE| = ¢" so %" = g for ali
a€E Thus 4" =1 and if " =1 for 0 < i < n then o™ = q. This would con-
tradict the fact that the polynomial x** — y has no more than g" roots in E.
Hence o(y) = n and |13 = n. Let F' = Inv <#,. By the Fundamental Theorem
of Galois Theory, we know that [E:F'l=n and Gal E/F =<{n>. On
the other hand, since y e Gal E/F, FcF' =1Inv {(n). Since n— [E:F] =
[E:FJ[F:F] = n[F:F] we have F' = F and so E is Galois over F with
Gal EfF = ¢(n>. O




Suppose K is a subfield of E/F. Then m — [K:F]|n = [E:F]. On the other
hand, let m be any divisor of #. Then the cy

clic group Gal E/F has one and
only one subgroup of order nfm. Hence, by the Fundamental Theorem of




where the product is taken over all monic irreducible polynomials of degrees
dividing n. Since x" — x has no multiple roots and hence no multiple factors
in F[x], it suffices to show that a monic irreducible polynomial g(x) is a factor
of x*" — x if and only if its degree m is a divisor of n. Let g(x) be a monic irre-
ducible factor of x™ — x in F[x], deg g(x) = m, and let E be an extension field
of F with | E:F] = n. Then E is a splitting field over F of x™ — x and hence E
contains a root r of g(x). Then g{x) is the minimum polynomial of r over F.
Hence F(r) 15 a subfield of E/F such that [F(r): F] = m. Then m|n, Conversely,
let g(x) be a monic irreducible polynomial in F[x] of degree m|n. Then
K’ = F[x]/(g(x)) is an extension field of F with |[K'| = g™ Since m|n, K' is iso-
morphic to a subfield K of E/F. Then E contains an element » whose minimum
polynomial over F is g(x). Since »™" =, g(x)|(x™" — x). This establishes the
factorization (70) where g(x) runs through the set of monic irreducible polyno-
mials in F[x] of degree m|n. Comparing the degrees of the two sides of {70)
we obtain









