

Tài liệu này được dịch sang tiếng việt bởi:

Từ bản gốc:

 $\underline{https://drive.google.com/folderview?id=0B4rAPqlxIMRDUnJOWGdzZ19fenM\&usp=sharing}$

Liên hệ để mua:

thanhlam1910_2006@yahoo.com hoặc frbwrthes@gmail.com hoặc số 0168 8557 403 (gặp Lâm)

Giá tiền: 1 nghìn /trang đơn (trang không chia cột); 500 VND/trang song ngữ

Dịch tài liệu của bạn: http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

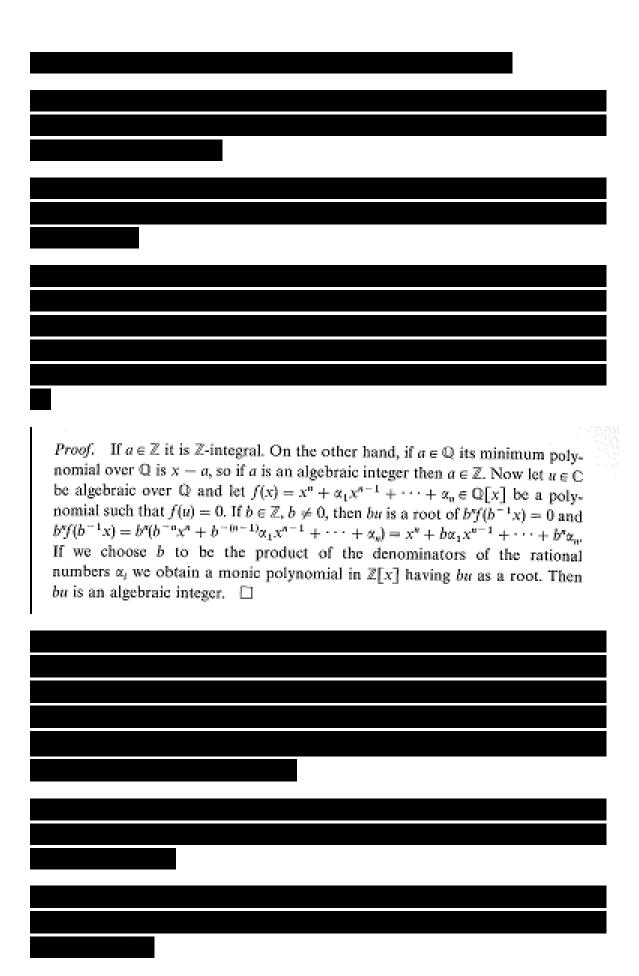
and if wM; c Mf for one of the Mu then wM1M2 • ■ • M,. c MlMz ■ • ■ Mr. We shall use these remarks and Lemma 1 to prove checked 18/2

và nếu $wM_i \subset M_i$ đối với một trong các M_i thì $wM_1M_2...M_i \subset M_1M_2...M_i$. Chúng ta sẽ dùng những tính chất này và Bổ đề 1 để chứng minh

THEOREM 4.23. If E is afield and R is a subring of E, the set A of R-integral elements of E is a subring of E containing R. Moreover, any element of E which is A-integral is R-integral (and so is contained in A).

Định lý 4.23. Nếu E là một trường và R là một vành con của E, tập hợp A các phần tử R-nguyên của E là một vành con của E chứa R. Hơn nữa, bất kỳ phần tử nào của E là A-nguyên cũng là R-nguyên (và vì vậy sẽ nằm trong A).

Proof. Let u and v e A so that there exist finitely generated ^-submodules M and N of E containing 1 such that uM c M and vN cz]V. Then $(u + v)MN \le u(MN) + v(MN) \le MN$. Also (uv)MN c MN. Since 1 e MN the conditions of Lemma 1 are satisfied for u + v, 1 and uv. Hence these elements are R-integral and A is thus a subring of E. It is clear also that A R. Now let u be A-integral. Then we have an M = An, $+ \cdot \cdot \cdot + Au$, containing 1 and satisfying uM c M. We may as well assume ut = 1. Since uM c M there exist e A such that $uui = \pounds$ afjiij. Now there exists a finitely generated i?-submodule jVy such that aijNfj c NfJ and 1 e N;j. Multiplying together the Ntj we obtain a finitely generated module $N = Rv \pm + \blacksquare \blacksquare + Rvm$ with v1 = 1 satisfying atjN $\le N$ for every av. Let P = Ru, Vj. Then I = u1VisP and u(UiVk) =]T a{jUjVk — £ ufiijVk. Since ai:ivk e N tins is an R-linear combination of the elements UjVk. It follows that $uP \le P$, and so u is R-integral, by Lemma 1, \square


Proof. Let u and $v \in A$ so that there exist finitely generated R-submodules M and N of E containing 1 such that $uM \in M$ and $vN \in N$. Then $(u \pm v)MN \in u(MN) + v(MN) \in MN$. Also $(uv)MN \in MN$. Since $1 \in MN$ the conditions of Lemma 1 are satisfied for $u \pm v$, 1 and uv. Hence these elements are R-integral and A is thus a subring of E. It is clear also that $A \supset R$. Now let u be A-integral. Then we have an $M = Au_1 + \cdots + Au_n$ containing 1 and satisfying $uM \in M$. We may as well assume $u_1 = 1$. Since $uM \in M$ there exist $a_{ij} \in A$ such that $uu_i = \sum a_{ij}u_j$. Now there exists a finitely generated R-submodule N_{ij} such that $a_{ij}N_{ij} \in N_{ij}$ and $1 \in N_{ij}$. Multiplying together the N_{ij} we obtain a finitely generated module $N = Rv_1 + \cdots + Rv_m$ with $v_1 = 1$ satisfying $a_{ij}N \in N$ for every a_{ij} . Let $P = \sum_{i,j} Ru_iv_j$. Then $1 = u_1v_1 \in P$ and $u(u_iv_k) = \sum a_{ij}u_jv_k = \sum u_ja_{ij}v_k$. Since $a_{ij}v_k \in N$ this is an R-linear combination of the elements u_jv_k . It follows that $uP \subseteq P$, and so u is R-integral, by Lemma 1. \square

Chứng minh. Giả sử u và $v \in A$ sao cho tồn tại các R-mô-đun con được sinh hữu hạn M và N của E chứa \square sao cho $uM \subseteq M$ và $vN \subseteq N$. Thế thì $(u \pm v)MN \subseteq u(MN) + v(MN) \subseteq MN$. Tương tự $(uv)MN \subseteq MN$. Bởi vì $\square \in MN$ các điều kiện của Bổ Đề 1 được thỏa mãn đối với $u \pm v$, \square và uv. Vì thế, những phần tử này là R-nguyên và vì thế A là một vành con của E. Chúng ta cũng dễ dàng thấy rằng $A \supset R$. Bây giờ giả sử u là A-nguyên. Thế thì chúng ta có một $M \supset Au_1 + \cdots + Au_n$, chứa \square và thỏa mãn $uM \subseteq M$. Chúng ta cũng có thể giả sử $u_1 = \square$. Bởi vì $uM \subseteq M$ tồn tại $a_{ij} \in A$ sao cho $uu_i = \sum a_{ij}M_j$. Bây giờ, tồn tại một R-mô-đun con được sinh hữu hạn N_{ij} sao cho $a_{ij}N_{ij} \subseteq N_{ij}$ và $1 \in N_{ij}$. Cùng nhân với N_{ij} chúng ta thu được một mô-đun được sinh hữu hạn $N = Rv_1 + \cdots + Rv_m$ cùng với $v_1 = 1$ thỏa mãn $a_{ij}N \subseteq N$ đối với mỗi a_{ij} . Đặt $\sum_{i,j} Ru_iv_j$. Thế thì $1 = u_1v_1 \in P$ và $u(u_iu_k) = \sum a_{ij}u_ju_k = \sum u_ja_{ij}v_k$). Bởi vì $a_{ij}v_k \in N$ đây là R-tổ hợp tuyến của các phần tử u_jv_k . Suy ra rằng $uP \subseteq P$, và vì vậy u là R-nguyên, theo Bổ Đề 1, \square

In the case in which R = F is a subfield this result states that the elements of E which are algebraic over F constitute a subring. Moreover, in this case, if u is algebraic, then F(u) = -F[w] > an< i 1,1 is therefore algebraic for $u ^ 0$. Hence the set of elements of E which are algebraic over F constitute a subfield A of E and every element of E which is algebraic over A is contained in A.

In the case in which R = F is a subfield this result states that the elements of E which are algebraic over F constitute a subring. Moreover, in this case, if u is algebraic, then F(u) = F[u], and u^{-1} is therefore algebraic for $u \neq 0$. Hence the set of elements of E which are algebraic over F constitute a subfield A of E and every element of E which is algebraic over F is contained in A.

We now specialize $E = \mathbb{C}$ and $R = \mathbb{Q}$ or \mathbb{Z} . Then the \mathbb{Q} -integers are the algebraic numbers and the \mathbb{Z} -integers are algebraic integers. We have the following criterion for a complex number to be an algebraic integer:

We shall need to use the so-called fundamental theorem of algebra, which states that any polynomial in $\mathbb{C}[x]$ of positive degree has a root in \mathbb{C} . This result, which will be proved in section 5.1, implies that every monic polynomial of positive degree with coefficients in \mathbb{C} factors as a product $\prod (x-r_i)$ in $\mathbb{C}[x]$. In other words, \mathbb{C} contains a splitting field for every monic polynomial $\neq 1$ in $\mathbb{C}[x]$. It follows that if S is a finite set of algebraic numbers we can imbed $\mathbb{Q}(S)$ in a Galois extension $K/\mathbb{Q} \subset \mathbb{C}$.

the field of algebraic numbers A and its additive group, we now denote the latter as A' and its elements as u', where $u \to u'$ is an isomorphism of (A, +, 0) onto A'. We write the composition in A' as multiplication. Then $a \to a'$ is 1-1 and a'b' = (a+b)', 0' is the unit of A' and (-a)' is the inverse of a'. The group algebra A[A'] we are interested in, is the set of sums $\sum v_i u_i'$, $v_i \in A$, $u_i' \in A'$, where addition is the obvious one, and multiplication is given by the distributive law, and $(v_1u_1')(v_2u_2') = v_1v_2(u_1 + u_2)'$. Moreover, if u_1, \ldots, u_n are distinct elements of A, then the elements u_1', u_2', \ldots, u_n' are linearly independent over A: that is, $\sum v_i u_i' = 0$ for $v_i \in A$ implies that every $v_i = 0$. Now, in $\mathbb C$ we have $e^{u_1}e^{u_2} = e^{u_1+u_2}$. Hence, by the "universal" property of group algebras given in exercise 8, p. 127, we have a homomorphism ε of A[A'] into $\mathbb C$ sending $\sum v_i u_i'$ into $\sum v_i e^{u_i}$. Theorem 4.22 can now be restated as: ε is a monomorphism.

2 -1	m.

The group algebra A[A'] is commutative. We shall now show that it is a domain. To see this we introduce an ordering in $\mathbb C$ which is compatible with addition, the so-called lexicographic ordering of $\mathbb C$. If x=a+bi and y=c+di where a,b,c,d are real, then we say that x>y if a>c or if a=c and b>d. This ordering satisfies the trichotomy law: for any pair (x,y) either x>y, x=y, or y>x. Moreover, if x>y and z>t then x+z>y+t. Now let $\sum_{i=1}^{n}v_{i}u'_{i}$, $\sum_{i=1}^{m}z_{j}t'_{j}$ be two non-zero elements of A[A']. Then we may assume that $v_{1}\neq 0$, $z_{1}\neq 0$, and $u_{1}>u_{2}>\cdots>u_{n}$, $t_{1}>t_{2}>\cdots>t_{m}$. Then $(\sum v_{i}u'_{i})(\sum z_{j}t'_{j})=v_{1}z_{1}(u_{1}+t_{1})'+a$ sum of terms of the form wq' where $q< u_{1}+t_{1}$. Clearly this is not zero, so A[A'] is a domain.

Suppose $\sum v_i u_i' \in \ker \varepsilon$. We can imbed the u_i and v_i in a Galois subfield K/\mathbb{Q} of \mathbb{C} . Then the subset of elements of the form $\sum x_i y_i'$ with $x_i, y_i \in K$ is a subring $K[K']$ of $A[A']$, and if $\eta \in G = \operatorname{Gal} K/\mathbb{Q}$, then η defines two automorphisms in $K[K']$. The first of these, which we shall denote as $\sigma(\eta)$, is $\sum x_i y_i' \to \sum \eta(x_i) y_i'$, and the second is $\tau(\eta): \sum x_i y_i' \to \sum x_i (\eta(y_i))'$. The fact that these are automorphisms is clear. Now suppose $\sum v_i u_i' \neq 0$. Then if $G = \{\eta_1, \eta_2, \ldots, \eta_m\}$ every $\sigma(\eta_i)(\sum v_i u_i') \neq 0$ and hence

Since U contains the factor $\sum v_i u_i'$, $U \in \ker \varepsilon$. It is clear from the commutativity of $A[A']$ that $\sigma(\eta)U = U$ for every $\eta = \eta_k \in G$. Hence if we write U as $\sum z_i t_i'$ with distinct t_i' , then $\eta U = U$, that is, $\sum \eta(z_i)t_i' = \sum z_i t_i'$, implies $\eta(z_i) = z_i$ for every z_i and every $\eta \in G$. Then $z_i \in \mathbb{Q} = \operatorname{Inv} G$. We have therefore shown that if we have a non-zero element in $\ker \varepsilon$ then we have one of the form $\sum v_i u_i'$ with rational v_i . Now apply $\tau(\eta_j)$ to this element and form
Then this is a non-zero element of ker ε satisfying $\tau(\eta)V = V$ for all $\eta \in G$. We can write $V = \sum z_i t_i'$ where the $z_i \in \mathbb{Q}$ and we have $\sum z_i (\eta(t_i)') = \sum z_i t_i'$, $\eta \in G$. We now average these various expressions for V to obtain

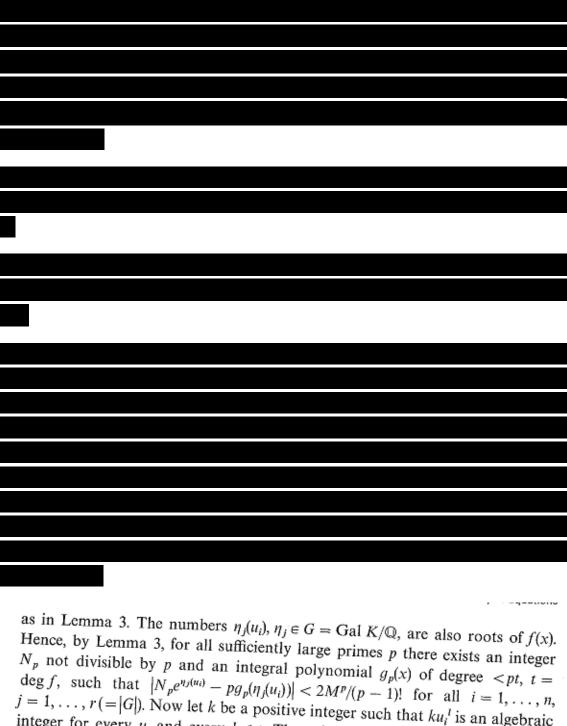
We have now shown that ker $\varepsilon \neq 0$ implies that we have a non-zero element in ker ε of the form $\sum v_i T'(t_i)$ where the $v_i \in \mathbb{Q}$. Also, by combining terms we may assume that $T'(t_i) \neq T'(t_j)$ for $i \neq j$, which implies that $t_j \neq \eta(t_i)$ for every $\eta \in G$. This relation shows that if $\sum v_i T'(t_i) \in \ker \varepsilon$ with $v_i \in \mathbb{Q}$, $v_1 \neq 0$, and $t_j \neq \eta(t_i)$ for every $i \neq j$ and $\eta \in G$, then multiplication by $T'(-t_1)$ gives an element in ker ε of the form

with $v_i \in \mathbb{Q}$, $v_0 \neq 0$, $u_i \neq 0$. Multiplication by a suitable integer allows us to assume the v_j are integers. The fact that (64) $\in \ker \varepsilon$ implies that we have the relation (63).

So far the argument has been purely algebraic. We now come to the analytic part of the proof, which will consist of establishing a contradiction to a relation of the form (63) where the v_i are integers, $v_0 \neq 0$, and the u_i are algebraic numbers $\neq 0$. We assume that all the u_i and hence all $\eta_j(u_i)$ are roots of a polynomial $f(x) = \sum_{i=0}^{t} a_k x^k \in \mathbb{Z}[x]$, $a_0 \neq 0$. Let p be a prime and introduce

where s=tp+p-1. Then the $b_j\in\mathbb{Z},\ b_{p-1}=a_0^p$ and for $p-1\leq j\leq s$ we have

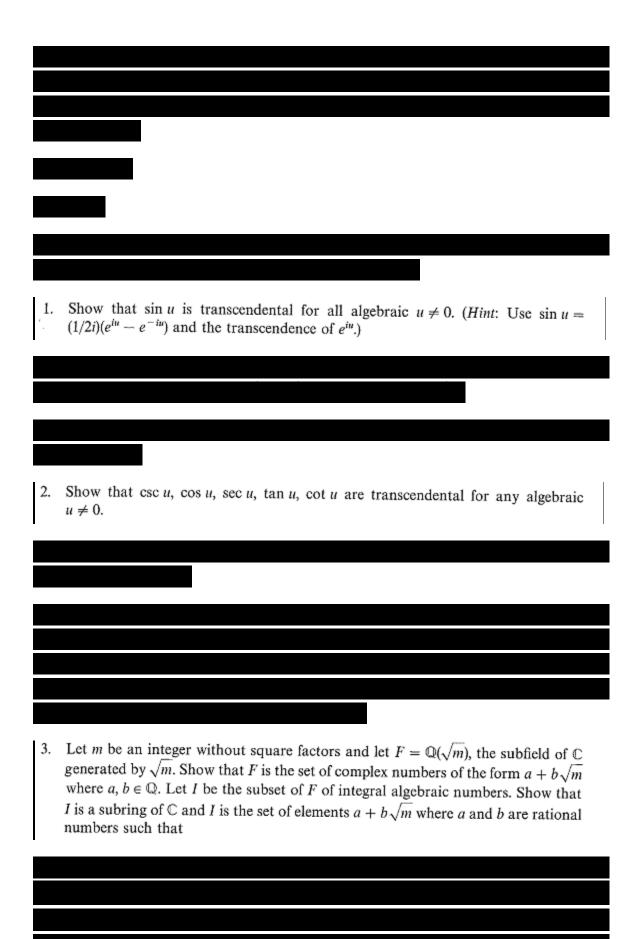
It is understood here that the first bracket is 0 if j = p - 1. Moreover, if $j \ge p$, then $\frac{j!}{(j-p)!} = p! \binom{j}{p}$ so this is p! times an integer. A fortiori, $\frac{j!}{k!}$, $0 \le k < j - p$, is p! times an integer and hence the first bracket in (65) is p! times an integral polynomial. Now put

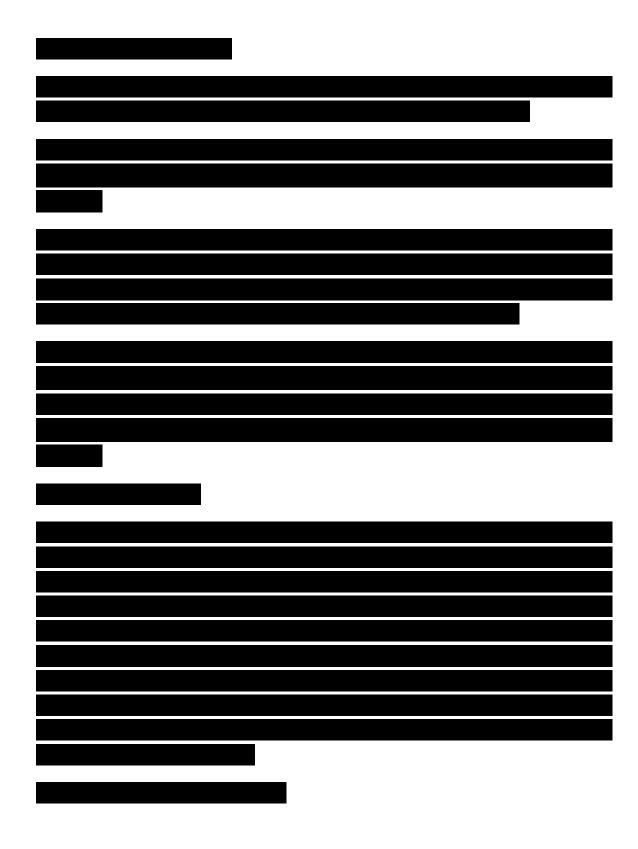

where $g_p(x) \in \mathbb{Z}[x]$. We observe next that

and these are all divisible by f(x) since $h(x) = x^{p-1}f(x)^p$. Hence the first summation in (67), which is $h'(x) + h''(x) + \cdots + h^{(p-1)}(x)$, is divisible by f(x) and this becomes 0 when we put $x = u_i$. Next we need to estimate $|R(u_i)|$ where R(x) is the second summation in (67). We now assume that the prime p is chosen so that $p > 2|u_i|$ for all u_i . Then since $j + 1 \ge p$ also, we have

if M is the largest of the 2n numbers $\sum_{i=0}^{t} |a_k| |u_i|^k$ and $\sum_{i=0}^{t} |a_k| |u_i|^{k+1}$ for $i=1,2,\ldots,n$. Hence if $p>2|u_i|$ then we have

Moreover, if in addition $p > |a_0|$, then N_p , which is given by (66), is not divisible by p since $N_p \equiv b_{p-1} = a_0^p \equiv a_0 \pmod{p}$. We therefore have the following


LEMMA 3. Let u_i , $1 \le i \le n$, be non-zero algebraic numbers, $f(x) = \sum_0^t a_k x^k \in \mathbb{Z}[x]$, $a_0 \ne 0$, be a polynomial such that $f(u_i) = 0$ for all i. Let M be the maximum of the 2n numbers $\sum_{k=0}^t |a_k| |u_i|^k$ and $\sum_{k=0}^t |a_k| |u_i|^{k+1}$ and let p be a prime p max $(|a_0|, 2|u_1|, \ldots, 2|u_n|)$. Then there exists an integer N_p not divisible by p and a polynomial $g_p(x) \in \mathbb{Z}[x]$ of degree p such that the inequalities (68) hold.



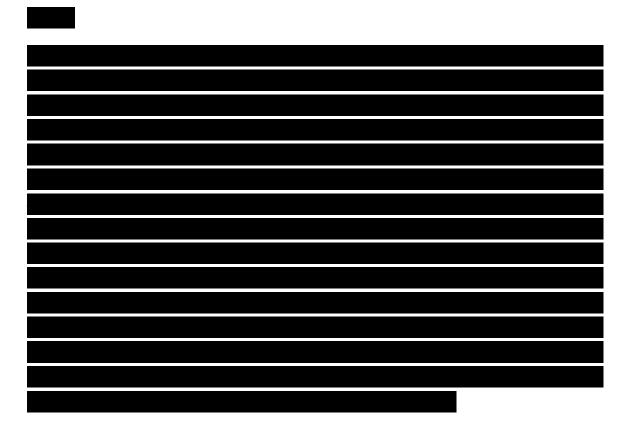
 $j = 1, \ldots, r(=|G|)$. Now let k be a positive integer such that ku_i^l is an algebraic integer for every u_i and every $l \le t$. The existence of such a k is assured by Theorem 4.24. Then $k^p g_p(u_i)$ is an algebraic integer and hence every $k^p g_p(\eta_j(u_i))$ is an algebraic integer. Also $\sum_{j=1}^{r} k^{p} g_{p}(\eta_{j}(u_{i}))$ is an algebraic integer, but since it is fixed by G, it is a rational number. Hence this is an integer, by Theorem

Now we have

- ·
where M is as before and L is a positive upper L
where M is as before and L is a positive upper bound for the $ v_i $, $1 \le i \le n$. The numbers $pk^pv_i \sum_{j=1}^r g_p(\eta_j(u_i))$ are integers divisible by p whereas N_p is not. Moreover, if p is sufficiently large then p/k and p/k .
Moreover, if p is sufficiently large then p/k and p/v_0 so $p/k^p v_0$. Hence the left-hand side of the inequality
left-hand side of the inequality

prime p . To begin with we know that the prime field of F can be identified with a field $\mathbb{Z}/(p)$ of residues modulo p for some prime p . We may now regard F as a vector space over $\mathbb{Z}/(p)$ in the usual way. Clearly $[F:\mathbb{Z}/(p)]$ is finite and if $[F:\mathbb{Z}/(p)] = n$, then we have a base (u_1, u_2, \ldots, u_n) for $F/(\mathbb{Z}/(p))$, and every element of F can be written in one and only one way as a linear combination $a_1u_1 + a_2u_2 + \cdots + a_nu_n$, $a_i \in \mathbb{Z}/(p)$. Evidently, this implies that $ F = p^n$. The same method shows that if $E \supset F$, $[E:F] = n$, and $ F = q < \infty$ then $ E = q^n$. The basic facts on finite fields can now be derived very quickly. We have first

We shall now apply the results of Galois theory to derive the main facts about finite fields. We observe first that if F is a finite field then $|F| = p^n$ for some


$x^q - x$ in F . We observe first that since $(x^q - x)' = -1$, $x^q - x$ has q distinct roots in F . Next we shall show that $R = \{u_1, u_2, \ldots, u_q\}$ is a subfield of F . For, using the nice binomial theorem $(a+b)^p = a^p + b^p$ for characteristic p , we see that for any i and j , $(u_i \pm u_j)^q = u_i^q \pm u_j^q = u_i \pm u_j$. Hence $u_i \pm u_j \in R$. Also $1 \in R$ and $(u_i u_j)^q = u_i^q u_j^q = u_i u_j \in R$, and if $u_i \neq 0$, then $(u_i^{-1})^q = (u_i^q)^{-1} = u_i^{-1}$. These results show that R is a subfield of F . Then R contains the prime field P and $R = P(R) = F$.

Next let F and F' be two fields such that $ F = q = F' $. Clearly this implies that both F and F' are extensions of $P = \mathbb{Z}/(p)$. Let F^* be the set of non-zero elements of F , so that F^* is a group under multiplication and $ F^* = q - 1$. Hence if $u \neq 0$ in F then $u^{q-1} = 1$ and $u^q = u$. Since the last relation holds also for $u = 0$, we see that every element of F is a root of $x^q - x$. Since this equation has no more than q distinct roots in any field it is clear that F is a splitting field over P of $x^q - x$. The same is true of F' . Hence the isomorphism theorem for splitting fields (Theorem 4.4, p. 227) implies that F and F' are isomorphic. \square

We shall now consider the relative theory of finite fields, that is, we want to study a finite field relative to a subfield. Let $|F| = q = p^m$ and let E be an extension field of F with [E:F] = n. Then, as we saw before, $E = q^n$. We have seen also that $a \to a^p$ is an automorphism of E (section 4.4). Hence $\eta: a \to a^q$ is an automorphism of E. Moreover, since |F| = q, $p^q = b$ for $p \in F$. Hence $p \in G$ all E/F. We now have

Proof. We show first that the order $o(\eta) = n$. For, $|E| = q^n$ so $a^{q^n} = a$ for all $a \in E$. Thus $\eta^n = 1$ and if $\eta^{n'} = 1$ for 0 < n' < n then $a^{q^{n'}} = a$. This would contradict the fact that the polynomial $x^{q^{n'}} - x$ has no more than $q^{n'}$ roots in E. Hence $o(\eta) = n$ and $|\langle \eta \rangle| = n$. Let $F' = \text{Inv } \langle \eta \rangle$. By the Fundamental Theorem of Galois Theory, we know that [E:F'] = n and $\text{Gal } E/F' = \langle \eta \rangle$. On the other hand, since $\eta \in \text{Gal } E/F$, $F \subset F' = \text{Inv } \langle \eta \rangle$. Since n = [E:F] = [E:F'][F':F] = n[F':F] we have F' = F and so E is Galois over F with $\text{Gal } E/F = \langle \eta \rangle$. \square

Suppose K is a subfield of E/F . Then $m = [K:F] n = [E:F]$. On the other hand, let m be any divisor of n. Then the cyclic group Gal E/F has one and only one subgroup of order n/m . Hence, by the Fundamental Theorem of

where the product is taken over all monic irreducible polynomials of degrees dividing n. Since $x^{q^n} - x$ has no multiple roots and hence no multiple factors in F[x], it suffices to show that a monic irreducible polynomial g(x) is a factor of $x^{q^n} - x$ if and only if its degree m is a divisor of n. Let g(x) be a monic irreducible factor of $x^{q^n} - x$ in F[x], deg g(x) = m, and let E be an extension field of F with [E:F] = n. Then E is a splitting field over F of $x^{q^n} - x$ and hence E contains a root F of F(x) is a subfield of F(x) is the minimum polynomial of F(x) of degree F(x) is a subfield of F(x) such that F(x) = m. Then F(x) = m. Then F(x) = m is an extension field of F(x) = m. Since F(x) = m is isomorphic to a subfield F(x) = m is an element F(x) = m. This establishes the factorization (70) where F(x) = m is through the set of monic irreducible polynomials in F[x] of degree F(x) = m in through the set of monic irreducible polynomials in F[x] of degree F(x) = m in through the set of monic irreducible polynomials in F[x] of degree F(x) = m in through the set of monic irreducible polynomials in F[x] of degree F(x) = m in through the set of monic irreducible polynomials in F[x] of degree F(x) = m in the degree of the two sides of (70) we obtain

