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Proposition 9. Let A be a left G-
module and M a Z-module; further,
let A ®z M be given the structure of a
left G-module for which
cr@ (g) x) = <ra ® x (aeA, aeG,
xeM). Checked 25/2 9:08

If now A is G-special then so is A

®ZM. In particular, Z(G) is G-
special.
Proof. Let u : A -+A be a Z-

homomorphism such that

a=E <r{w(<r_1a)}

<T

for all aeA and put v = u ® iM, where
IM is the identity map of M. Then,
ifae.4, xeM and y = a®x,

2 (T\WV{O 1y)} = 2 o-{u(cr-1a) (g) a}
=£ {"a—xa) ®x}=a<g)a; =Y,

<r a <r

and the  proposition  follows
immediately.

There IS another result,

complementary to the one just proved,
which can be stated thus:

Proposition 10. Let Bbea right G-
module and M a Z-module; further,
let Homz (B, M) be given the
structure of a left G-module in which,
for /e Homz(B, M), (M6 =y(6(r)
(6€5> (TEQG)

If now B is G-special, then so is
Homz (B, M). In particular,

Homz (Z(G), M)

Is G-special.

Proof. Let u : B->B be such that

b =2 {u(ba~1)}T

<r

for all beB, and put v = Horn (u,iM).
If now/e HornZ(B, M), then U <T~If
v{(T-1f) is the combined mapping B-
>B-> M, consequently, if we write
<r{«(<r-1/)} = (j)*, we shall have

Pinh dé 9. Gia sir A la mot G- mo-dun trai va M 1a mot Z-
mo-dun ; thém vao do6, gia st A ®, M la méot cau truc nao do
cua G- mo-dun trai co tinh chat

cla®@z)=ca®@x (aed, ce, xeM).

Proposition: cling c6 nghia 1a “ménh de”
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fa(b) = {«(cr_ 1N} (bcr) = {tr-1/}
«(6<r) = f{u(b<r) o-1}.

Accordingly (£ fa) b = f(b),

<r

and therefore
Hfa=f"
Ol

2 2 {vi(T~1f)} =
(T

This completes the proof.

It is now possible to give two very
useful criteria for a (?-module to be
special. Let A be a left G-module,
then Z(G) ®ZA has a structure as a
left (?-module in which

tr(A ® a) = trA 0 a (AeZ(G),aeA,
creCr). (10.13.5)

Further, there is a homomorphism
Z(G) ®ZA ->A

inwhich  A®a->Aa, (10.13.6)
and this is clearly a Cr-epimorphism.
Proposition 11. Let A be a left G-
modvle. Then A is G-special if and
only if the mapping Z(G) ®z A ->A,
defined in (10.13.6), is directf when
regarded as an epimorphism of G-
modules.

Proof. If Z(G) ®ZA -+A is direct then
A is isomorphic to a direct summand
of the Cr-module Z(G)®zA. But
Z(G)®zA is (?-special (Proposition 9)
hence, by Proposition 8, A is G-
special.

To prove the converse, let A be G-
special then the identity map iA of A
Is the norm of a 2-homomorphism u :
A-+A. Let u* be the Z-
homomorphism A->Z(G)®zA defined
by a-> 1 ®u(a), then u : A ->A'is the
combined map

AXAZ(G)®ZAMA.

Takingnorms and applying (10.13.4),

$5(0) = {v(c7f)} (bo) = {of}u(bo) = flu(bo) o1}
Vi vay
(§ ¢.)b = f(b),

va do db

Z' of{v(o—Yf)} = zr Py =f.

lPA@a)=oA®a (eZ(G),aed,0e@). (10.13.5)

2O @,4 >4

(10.13.6)

iy u*
‘ A>A->Z(FR, A A,




we find that iA can be represented
as  N(u*
A >Z{G) ®ZA>A,

and, since Nu* is a Cr-
homomorphism, this completes the
proof.

For the second criterion we use
Hornz(Z(G),A) and endow it with the
structure of a left Cr-module in which
of, where

/e Homz (Z(G),A),

IS given by

(<rhA  =/(A<r) (AeZ(G), 0'e.G)
(10.13.7)

Now, if a e A, the mapping A->Aa is
a 2-homomorphism of Z(G) into A.
Denoting this homomorphism by/, we
have

/(A) = Ao, (10.13.8)

and then a ->/ is a homomorphism
A->R.omz{Z{G),A), (10.13.9)

which one easily verifies is a <?-
monomorphism.

f See section (1.9).

Proposition 12. Let A be a left O-
module. Then A is G-special if and
only if the mapping A®-Homz (Z(G),
A) of (10.13.9) is direct, when
regarded as a monomorphism of G-
modules.

Proof. If the monomorphism is direct,
then A is isomorphic to a direct
summand of the (5-module Homz
(Z(G), A). But this is G-special
(Proposition 10) consequently A is G-
special.

Assume next that A is Cr-special and
let the identity map iA of A be the
norm of u : A ->A. Now the Z-
homomorphism

u* : 'Komz(Z{G),A)-"A

defined by u*{f) = /(1), is such that u

Niu*)
E——}Z(G) ®y4—>A,

fE Hﬂmz (‘Z(G}:A):

‘(a‘f)& = f(Ao) (AeZ(@), oce@).

(10.13.8)

(10.13.7)

‘u* : Hom, (Z(G), 4) -4




Is the combined mapping
A -> Homz (Z(G), A) "+ A -t A;

consequently, taking norms, iA can be
represented as

Nu*

A >- Homz (Z(G), A) A
and, since Nu* is a 6r-
homomorphism, this shows that
A"Tlomz(Z(G),A)

Is direct.

As an application of the last two
results we shall prove

Theorem 17. If A is either G-
projective or G-injective, then A is G-
special.

Proof. If A is Cr-projective then the
epimorphism Z(G) ®ZA -+A of
Proposition 11 is direct by Theorem 1
of section (5.1). On the other hand, if
A is 6?-injective then the (?-
monomorphism

A -> Homz (Z(G), A),

which occurs in Proposition 12, is
direct by virtue of Theorem 6 of
section (5.2). The theorem now
follows.

10.14 Properties of the complete
derived sequence

We are now in a position to establish
some further facts about the complete
derived sequence

J~*(G,A), J~1(G,A), J°(G,A),
J*(G,A), ...

of an arbitrary finite group G. These
additional facts stem from

Theorem 18. If A is G-special, then
Jn{G,A) = 0 for all values ofn.

Proof. Let u : A -+A be a Z-
homomorphism such that
«=2{<TM((T _1a)} tr

for all a e.4. If now aeA° then M((r-
1a) = w(a) and therefore a is the norm
of u{a). Thus Aa ¢ N(A)

0¥

iy
A>Hom, (Z(G),4)>A>A4;

Nu*
A——>Hom,(Z(@), A)— A

A —>Hom, (Z((), 4)

—Hom; (Z(G), 4),

ooy J7H@, A), TG, 4), JNG, 4), JHG, 4), ...




consequently, by (10.12.13), it
follows that J°(G,A) = 0.

Assume next that aeNA then Na = 0
and therefore 2 u(cr-la) = u{Na) = 0.
<r

Accordinglya =2 (* — 1) {«(cr-1a)}
elA,

<T

hence NA ¢ IA and so J~1(G,A) =0
by (10.12.14).

Put A' = ~Komz{Z(G),A) and let A’
have the structure of a left G-module
as indicated in (10.13.7). By
Proposition 12, A is isomorphic to a
direct summand of the G-module A’
and, by Proposition 3, Jn{G,A") =
Hn(G,A") = 0 for all n > 1. It follows
that Jn(G, A) =0 for 1.

Finally, let A* = Z(G) ®ZA, where
A* has the structure of a left Cr-
module described in (10.13.5). Then,
by Proposition 11, A is iso-morphic to
a direct summand of A * (as G-
module); furthermore, when n ~ 2,
Proposition 4 shows that

JNG,A*) = Hn_1{G,A*) = 0.

Accordingly «7~n(G, A) =0 forw " 2
and with this the proof is complete.

Lemma 1. Let / A'A be a
homomorphism of left G-modules
which is the norm of a Z-
homomorphism u : A' -*A. Then there
exists a G-homomorphism A' ->Z(G)
®ZA such that f is the combined
mapping A'—>Z(G) ®z A —>A.

In this lemma, Z(G) ®ZA is to have
the same structure as G-module and
Z(G) ®ZA is to be the same G-
homomorphism as in Pro-position 11.
Proof. Let u* : A' Z(G) ® z A be the
Z-homomorphism defined by u*(a') =
1 ® u(a’), then u is the combined

> u{o1a) = w(Na) = 0.

I
a=Y(c—1){u(cla)}elAd,

"G, A"y = HYG, 4’) = 0|
]

J MG, A%) = H, (G, A*)=0.




mapping

*4' W*

A'->ANZ(G) ®ZANA.

The required result now follows from
Proposition 7 on taking norms.
Proposition 13. Let f : A->A be a
homomorphism of left G-modules and
suppose that f is the norm of some Z-
homomorphism of A' into A. Then
Jn(G,f) = 0 for aU values of n.

Proof. Jn(G,f) is the homomorphism
Jn(G,A)—*In(G,A) induced
by/consequently, by Lemma 1, this
can be represented in the form
JN(G,A) -+In(G, Z(G) ®z A) -
*In(G,A).

But, by Theorem 18, the second term
is a null module because Z(G) ®ZA is
G-special (Proposition 9). The result
follows.

Now let A be any G-module and let
IA be its identity map. Since 1A is a
G-homomorphism, it follows that
N(iA) = giA, where q is the order of
G. However Jn is an additive functor
and so

Jn(G,qiA) = qJn(G, iA).

This establishes the next theorem if
one takes account of Proposi-tion 13.
Theorem 19. Let G be a finite group
of order g and A any left G-module.
Then gJn{G, A) = 0 for all values of
n.

Taking account of Theorems 17 and
18 we may observe that, inter alia, the
complete derived sequence of G has
the following properties:

(@ the Jn(G,A) form an exact,
connected sequence of covariant
functors;

(b) J°(G, A) is the functor

ty u*
A'>A' >Z(0)®,A4A.

NG, A" > JING, Z(G) ® ; A) — (G, A).

JM G, qi4) = ¢ (G, 1 ,).




consisting of the fixed elements of A

modulo the elements which are
norms;
() In(G,A) = 0 for all n whenever

A is either G-
injective.

These suffice to characterize the
sequence to within an isomorphism of
connected sequences. Indeed, one has
the  following more general
uniqueness criterion which will be
needed later.

Proposition 14. Let A be a variable
left G-module and let

.., T=\A), T-\A), T»(A), TCA), ...

and .., U~2(A), U-HA), U\A),
IP(A), ...

be exact connected sequences of
covariant functors of A whose values
are Z-modules. Suppose further that
whenever A is either G-projective or
G-injective, then Tn(A) = 0 and
Un(A) = 0 for all values of n. If now,
for a particular integer r, there exists a
functor equivalence Tr{A) Ur{A),
then this equivalence has a unique,
extension to an isomorphism of the
connected sequences.

G-projective or

The proposition needs no proof since
it follows at once from the corollaries
to Theorems 10 and 12 of section
(6.5).

10.15 Complete free resolutions of Z
The method of obtaining the complete
derived sequence of 0, by combining
together  the homology  and
cohomology  theories, has the
advantage of showing how these all
tie up with one another; but it is
inconvenient in that the two halves of
the sequence are then on different
footings and therefore tend to require
separate discussion. In a moment we

.., T-%(A), T-1(4), T*(4), T\(A), ...

..., U™A), U-1(4), U%(4), UN(A), ...




shall describe a method by which this
can be overcome, but first, in order
not to interrupt the main development
at an awkward moment, we shall
establish a property of exact
complexes of Z-free modules.
Proposition 15. Let T(M) be an
additive functor of Z-modules, whose
values are also Z-modules, and let X
be an exact complex

whose component modules are Z-free.
Then T(X) is also exact.
Proof. We shall suppose, for
definiteness, that T is a covariant
functor. The contravariant case can be
treated similarly. Put
Im (Xn—> = An
then, for each value of n,
0->J4n+1->Xm->MTC->0

(10.15.1)
is an exact sequence. Now An is a
submodule of the Z-free module
Xre_1 and Z is a principal ideal
domain, consequently, by Theorem 3
of section (9.1), An is also Z-free. It
follows that the exact sequence
(10.15.1) splits and therefore, since T
Is additive,
0 -»m T (Ant+1) -+T(Xn)->T(An)->0
Is exact for all n. But T(Xn+l) ->
T(Xn) and T(Xn) -> T(Xn_") can be
represented by
TXn+DAT(An+1)->T(Xn) and
T(Xn)-~T(An) -> T(Xn_1)
respectively and now it can be seen
that
nXANAnxj nx”?)
IS exact as required.
We come now to a new concept.
Regarding Z as a left G-module (on
which 0 acts trivially), we define a
complete G-free resolution of Z as a
pair of exact sequences

0->4,,-X,—-4,-0 (10.156.1)

0->T(4,,,)->TX,)>T(4,)>0

T{Xﬂ--[-l} - T{‘Kﬂ) and T(Xn) - T(Xn-l)

T(X341) > T(Ap ) >T(X,) and T(X,)->T(4,)>T(X,_,)

T(X 1) > T(Xp) > T(X0y)




— ~+XtAX1MX0MZA 0 (10.15.2)
and
0-»-.Z->-X_1->-X_2->-+¢(10.15.3)

where ..., X0, X v X 2, ... are all G-
free and the mappings are G-
homomorphisms. If, in this situation,
we define X0->X 1 as the combined
mapping XO0-"Z-> X v then the

sequence

> X2 -*m Xt-> X0 -» X t X 2
>eee (10.15.4)
is exact. In view of this, it is

convenient to represent the complete
resolution by the single commutative
diagram

o o XAt XQ—*X NA-HK D-H*" e
\% (10.15.5)

0o

Suppose now that (10.15.5) is a
complete G-free resolution of Z and
let A be a left G-module. Denote by X
the complex (10.15.4), then the
homology module .H”{HomG(X, A)}
Is a covariant functor of A on account
of the fact that each G-
homomorphism A->A' produces a
translation HomG (X, A) ->HomG
(X, A"). Furthermore, if
0-+A*"ANA’->0

IS an exact sequence of G-modules
then, by Theorem 3 of section (5.1),

0 -> HomG (X, A *) HomG (X, A)->
HomG (X, A) 0

IS an exact sequence of complexes.
This, in turn, gives rise to the exact
sequence

. * « ~ Hn{ HomG (X, A*)} ->
Hn{ HomG (X,4)}-> Hn{ HomG (X,
A)}

->i/n+1{Hom0 (X,yI*)}-
>Jff"+1{Hom&, (X, A )}->ee.

[+ > Xy X, > X >Z >0 (10.15.2)|

0>Z->X >X 3>,

(10.15.3)

|—--~+X2+X1-+X°_-)-X_1—)X_g—s----

e Xy Xy X >X g e
oA
Z
P
0

(10.15.4)

(10.15.5)
0

0>A4*¥54-4"->0

0 >Homg (X, 4%) »Homy (X, 4) - Homg (X, 4') > 0|

ves > HY{Homg (X, A*)} > H*{Hom (X, A)} - H*"{Homg (X, 4")}

— H*1{Homg (X, A*)} > H*1{Homg (X, 4)} > ---




of homology modules. Indeed, we can
sum up these remarks and extend
them by saying briefly that

if 1{HomG(X, A},
tfo{Homo(X,")}, F{HomG(X,")}, ...
(10.15.6)

IS an exact connected sequence of
additive covariant functors.

Theorem 20. Let G be a finite group
and (10.15.5) a complete G-free
resolution ofZ. Then the exact
connected sequence (10.15.6) s
isomorphic to the complete derived
sequence of G.

Proof. Since (10.15.2) is a G-free
resolution of Z,
AM{HomG(X, ")} =
JNG.A),

Extb(Z,A) =

hence (Proposition 14) it is enough to
show that
#n{HomG(X, ")} = 0 (—co<n<00),
(10.15.7)
whenever A is either G-projective or
G-injective. By Theorem 17 this will
be more than covered if (10.15.7) is
established whenever A is G-special.
Assume therefore that A is G-special
then (Proposition 12) it is isomorphic
to a direct summand of A' = Homz
(Z(G),A), where A’ has the structure
of a left G-module obtained by
regarding Z(G) as a right G-module.
Now for any left G-module G we
have isomorphisms-)-

HomG(G, A) = HomG{G,
TAomz{Z{G), A)} « Horn z{Z(G)
®aC,A}

as Homz(G,M),

and this gives a functor equivalence
between HomG((7,A") and Homz((7,
A). It follows that corresponding
homology modules of the two

oy HY{Homg (X, A4)}, H*{Homg, (X, A)}, H'{Homg (X, 4)}, ...
(10.15.6)

1{Homg (X, 4)} = Ext} (2, 4) = JG, 4),

‘H"'{Homg (X, 4)} =0 (—oco<n<oo), (10.15.7)

Homg (C, A") = Homg {C, Hom, (Z(G), A)} ¥ Hom, {Z(G) ®,C, A}
~ Hom, (C, 4),

<o >Homg (X

A’y>Homg(X,, A)>Homg (X, ,,, 4")—>---

n—1s




complexes

. ee ->HomG (Xn_,, A") ->HomG
(Xn, A") -"HomG (Xn+1, A') ->meee
and

e ¢« o« >Homz (Xn v A) ->Homz
(Xn,A)->Hom2 (Xn+1, A)-> —
(10.15.8)

are isomorphic. But (10.15.4), being
an exact sequence of G-free modules,
Is also an exact sequence of -
modules hence, by Pro-position 15,
(10.15.8) is exact. Accordingly
//*“{HomG(X, A} = 0 and therefore
Hn{HomG (X, A)} = 0 for all values
of n.

Before we go on to establish the
existence of complete free
resolu-tions of Z in the case of an
arbitrary  finite group, we shall
illustrate  the last theorem by
considering the complete derived
sequence of a finite cyclic group.

Let G be a cyclic group of order q and
let <r be a generator. In this case Z(G)
Is @ commutative ring whose general
element has the form

9-1

2 nv<f,

K=0

where, of course, the nv are integers.
Put
N=1+a+..+a9-landT=cr—1
(10.15.9) and consider the mappings
N T

Z(G)->Z(G) and Z(G)"Z(G),

t See (8.5.4).

18 »HA

where the former consists of
multiplication by N and the latter of
multiplication by T.

If N('Ln,,<T’") = 0 then hnv = 0,

FﬁHnmz(an,A)-—;»Homz (X, 4)>Homy (X, ,,,4)—> -

(10.15.8)

and T =o0-1

N=1+o+..+0g21

N T
Z(@)—»Z(G@) and Z(G)—=Z(GF),

(10.15.9)




because Na" = N, hence 9—1 a-I

2 nvdv = 2 n,,(@a" — 1) = TA »=0
v=0

for a suitable AeZ(G). On the other

hand, NT = 0, consequently T N

Z(G) Z(G) Z(G) is exact.

Suppose now that T(H,n,,a") = 0, then

(w0 + ?iler+... + ng_laa~1) — (nOa +

nla2 + ... -t-w”cr9) = 0,

and thereforen0 = nl= ... = ng_x.
Thus Xwl,cr ° = NA', where A' ¢
Z(G),

N T

and so it is seen that Z(G)-*-Z(G)-
>Z(G) is also exact.

Consider next the augmentation
homomorphism Z(G)->Z as defined
in section (10.3). If crv belongs to its
kernel, then

no+nj+ =0,

which, as we saw above, implies that
hnvav is of the form AT. But every
element of this form certainly belongs
to the kernel, consequently T Z(G)->-
Z(G)->Z-"-0 is exact. Finally, the O-
homomorphism TZ"-Z(G), in which 1
Z->N, makes 0->Z->Z(G) ->Z(G)
exact and, N moreover, Z(G)-+Z(G)
can be represented as Z(G) Z ->m
Z(G). Collecting all these facts
together we obtain

Theorem 21. Let G be a cyclic group
of order q then NT N T N
Z(G)-* Z{G"Z(G)»Z(G)-+ Z(G) -*
Z(G) ..

XXZ*\

00

Is a complete G-free resolution of Z.
Here N and T, when used to indicate
mappings, signify multiplication by
the elements N = 1 + cr +... + crg~1
and T = a — 1 respectively. Z(G)-"Z
Is the usual augmentation map-ping
and, in Z-*Z{G), Iz maps into N.

(Mg + 10+ ...+ 0y 00 ) —(nyo + 0,02+ ... +7,_,09) = 0,

Nog+ny+...+n, =0,

A
zZ
AN




Still supposing that G is cyclic, let A
be a left G-module then, by Theorems
20 and 21, the complete derived
sequence of G consists of the
homology groups of a complex

But Homfl (Z{G), A) « A and on
identifying these two we obtain
Theorem 22. Let G be a cyclic group
of order g and A a left G-module.
Then the complete derived sequence
of G can be computed as the
homology groups of the complex

where the mappings N consist of
multiplication by 1 + cr +... + <r«_ 1
and the mappings T of multiplication
by or —1. (T operates on the
component modules with even
indices.) Accordingly

J2n(G, A) = AG/NA and JM1G, A) =
NAjIA.

Observe that an exact sequence 0->A'
AANATN) of G-modules, gives rise to
an exact sequence

m mm->NA"/TA" A°JNA’-+A°/NA ->
A"GjNA"
ANA'TTANAJIAANA"ITA"NA'GINA'-
>

and here the connecting
homomorphisms are those obtained
from the exact sequence of
complexes.

Let us return to the consideration of a

-+ > Homyg (Z(@), 4) > Homg (Z(@), 4) > Homg (Z(@), 4) > ---.|

T N T N
i3 AdsA4dsA>A->4—---,

Jn(@, A) = A%IN A

and  J UG, A) = yA[IA.

o> yA"[IA" > A'|NA' > A% NA > A"6|NA"
> A [IA" > yA[IA > yA"[IA" > A'C[NA’ ..

0 0 0 0
T N T
A A’ A A’
T ¥ N T
'—""ﬁ‘-.A rA rA A —
T N r
— 4" y: A" A"




general finite group. It will be
convenient to prove two lemmas.
Lemma 2. Let M be a Z-free module
with the elements//1,//2, ...,/isas a base
and letfa: M ->Z (1 <i”5s) be the Z-
homomorphism defined by

(i=)),

(i+))-

Then <f>v 02, ...,<j>s are a Z-basefor
Homz (M, Z). The verification is
immediate.






