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FUNDAMENTAL ELECTROMAGNETIC
CONCEPTS FOR RAM

In Chapter I, the concept of RAM was
introduced as a means for reducing the RCS
of aerospace vehicles. Numerous RAM
were also introduced in that chapter; many
of which still find extensive use in stealth,
antenna engineering and microwave related
technologies. It was also mentioned that
these RAM vary considerably in their
absorption characteristics. An enhancement
in the absorption due to the RAM coating
on a target results in lower scattered EM
fields and hence radar cross section
reduction (RCSR) of the target.

It is possible in principle to predict the
electromagnetic fields at an observation
point, i.e., the receiving radar, by the
application of EM field theory. In this
chapter, we first introduce Maxwell’s
equations in their most general form. These
equations constitute the starting point for
F.M wave propagation analysis. The wave
analysis involves not only free space
propagation and interaction at the interface
of two media, but also through bounded
material medium. EM wave propagation
equations are set up in this chapter for the
three most common cases of free space,
homogeneous, and inhomogeneous
propagation.

Wave propagation through a material
medium is governed by the intrinsic
physical parameters of the medium, viz. its
permittivity, permeability and conductivity.
The well known classes of dielectric and
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magnetic RAM are essentially a
manifestation of these intrinsic EM
parameters of the medium. It is also
possible to explain the various properties,
such as isotropy, linearity and reciprocity of
the medium in terms of the nature of these
parameters.

In the optical region one frequently
encounters the phenomena of optical
activity and circular dichroism. Drawing
upon a microwave analog of these, one may
visualize chiral materials, which are in fact
highly effective absorbers. The
electromagnetic parameters corresponding
to chirality arc defined in Section 2.4.

2.1 MAXWELL’S EQUATIONS

The  most  fundamental laws  of
electromagnetics are Maxwell’s equations
which originate from Faraday’s law.
Ampere’s law, and Gauss’s law. These are
expressed in differential form as

In the equations above, E and H are the
electromagnetic field vectors. The wave
propagation analysis is often carricd out in
terms of these. E and H refer to the electric
field strength and the magnetic field
strength, respectively. D is known as the
electric displacement density whereas its
analog, B, is called the magnetic flux
density. The partial derivative in egs. (2.1)
and (2.2) is with respect to the time t.
Finally, the sy mbols J and p appearing in
the right hand side of egs (2.2) and (2.3)
refer to the electric current density and the
volume charge density, respectively.

Equation (2.1) follows from the Faraday
induction law, while cq. (2.2) is a
generalization of the Ampere circuital law
by Maxwell and is also referred to as the
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ta cling c6 thé giai thich nhimng tinh chét khéc,
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Maxwell-Ampere law. Equation (2.3) is the
differential form of Gauss's law for the
clcctric displacement density. Finally, eq.
(2.4) merely states that magnetic monopoles
are non-existent. It is in fact the magnetic
analog of Gauss’s law, and can be readily
derived from the Biot-Savart law.

Although one is accustomed to four
Maxwell equations, two of these, namely,
the divergence relations (2.3) and (2.4) can
be derived from the curl equations (2.1) and
(2.2) (Corson & Lorrain, 1962). The
alternate representation of the Maxwell’s
equations is in the integral form and can be
obtained by suitably integrating egs. (2.1)
through (2.4). The integration in the case of
egs. (2.1) and (2.2) is with respect to the
area element da, whereas in the case of egs.
(2.3) and (2.4) it is with respect to the
volume element dv. The Maxwell equations
in the integral form are:

The derivation of cgs. (2.5) and (2.6) is
carried out by resorting lo Stokes ’ theorem
Stokes' theorem is a well known result of
vector calculus which establishes an
equivalence between the surfacc integrals
and the line integrals; the curl of a vcctor A
over a surfacc area is thus related to the
vector on the curve enclosing that area.
"VxAda=£Adl (2.9)

Likewise, in the case of volume integrals,
the area contour integral appearing on the
left hand side of (2.7) and (2 8) follow from
Gauss's divergence theorem which relates
the divergence of a vcctor A from a volume,
to the vcctor over the surface area enclosing
that volume,




Both the differential and integral forms of
Maxwell’s equations are extensively used in
the EM wave propagation analysis For
example, the differential form of these
equations forms the starting point for the
finite difference time domain (FDTD)
analysis, and EM wave propagation in free
space and other continuous media On the
other hand, as shall be shown in the next
section, the integral form of Maxwell's
equations arc used to derive the boundary
conditions at the interface between two
media

2.2 SURFACE BOUNDARY
CONDITIONS

Equations (2.1) through (2 4) describe the
spatial value of EM vectors E, H, D and B
These vectors are continuous along the
direction of propagation within a medium It
Is of interest to examine whether these
vectors remain continuous across the
interface of two different media

We begin the discussion with egs. (2.1) and
(2.2). Hence for the corresponding integral
forms (2.5) and (2.6). it possible to visualize
a surface area enclosed by a curve.

Boundary Condition |

Let an area completely enclosed by a curve
be intersected by an interface of the two
media as shown in Fig. 2.1. By applying
Farad™’s law of eq. (2.5), one can visualize
the electric fields £r, and Ex2, very close to
the media interface along the .v-direction.
Similarly, Eib E)2, Evi and Eu are along the
v-direction. The exact values for these




vectors are not know n a priori. Integrating
along the closed curve we get,
(2.11)

The assumption that and £t: are very close
to the interface, requires that Ay tends to
zero. Thus

£|Ar-Ex,Av=0

(2.13)

Since ExX and £r, are tangential to the
interface, eq. (2.13) is generalized as:

The first boundary condition therefore
requires that the tangential component of
the electric field be continuous at the
interface of two arbitrary media. Without
loss of generalization, let us assume that
Medium 2 is a perfect conductor. For such a
case, it can be shown that Elanl is zero, so
that

(2.15)

Hence in those cases where one of the
media is a conductor, the electric field can
only be normal to the interface.

Figure 2.1 The boundar) condition for the
electric field vectors at the interface
between two media

Boundary Condition 2

As mentioned above, the Mawvell-Ampere
law of eq. (2.6) is also implicitly a curl
relation so that the corresponding boundary
condition can be analyzed in a similar
manner, as shown by Fig. 2.2. Once again,
integrating along the closed curve, we get
(216)




With reference to Fig. 2.2, it is possible to
define a linear current density J, for
perfectly conducting surfaces.

(2.17)

It may be noted that a Finite linear current
density is generated only when the current
density J is infinitely large. Equation (2.16)
can then be written as

Medium 2

Figure 2.2 The boundary condilion for the
magnetic field vectors at the interface
between two media The linear current
density Js is at the surface boundary

Since Ay tends to zero (vide Fig. 2.2),

that is

In cases where the current density J is finite,
Js tends to zero, and one obtains
[7t, = Hxl  (2.21)

Once again since the magnetic field HxI and
ffx2, in the limit are directed along the
interface to the two media, egs. (2.20) and
(2.21) may be written as

for a perfect conductor

Figure 2.3 The boundary condition for the
electric displacement density at the interface
The condition on the normal component of
1) is obtained by assuming \> to be
infinitesimally small

The second boundary condition therefore
states that if there exists a linear current
density at the interface as in the case of a
perfect conductor, the tangential component
of the magnetic field is discontinuous; in the




absence of this linear current density
between two arbitrary media, the tangential
component of magnetic field is continuous
at the surface.

The first and second of Maxwell’s equations
are curl relations giving rise to the
tangential boundary relations. On the other
hand. egs. (2.3) and (2.4) are divergence
equations. For the corresponding integral
equations (2.7) and (2.8), a finite volume
completely enclosed by a surface is
assumed. Such a visualization permits
elegant derivation of the boundary
conditions for the normal components of D
and B.

Boundary Condition 3

Gauss’s law (2.3) is a divergence relation
which could be used to arrive at the normal
boundary condition for D at the surface.
Consider an infinitesimal volume ArAyAr
in the rectangular coordinate system. With
reference to Fig. 2.3, we obtain:

As Ay tends to zero, an elemental surface
area A a (=AVAr) may be defined, which is
at the interface of the two media It is then
possible to define a surface charge density
to describe the charge enclosed within the
elemental volume

(2.25)

Substituting eq. (2.25) in eq. (2.24), we
obtain the relation

(0,1 - Dy2)&a = PjAa

or

0,1 - Dy2 ~ P\

Since Dvl and D,, are normal to the surface
boundary. eq. (2.26b) may be expressed as




Owvi-0.V2=P

If surface charges do not exist at the
interface, as is usually the case when both
the media are dielectric in nature,
I>M-0.VvV2=0

Finally, if Medium 2 is a perfect conductor,
the field inside, i.e., D\2 is zero, and eq.
(2.27) reduces to

for a perfect conductor

Thus the third boundary condition, in its
general form (2.27) states that if there are
free charges residing at an interface between
two media, the normal components of
electric displacement density on either side
of the interface differ by an amount equal to
the surface charge density at the interface.
As a corollary’, if there are no charges at the
interface, the normal component of the
electric displacement density is continuous
across the media. Finally, if one of the
media is a perfect conductor, the normal
component of the electric displacement
exterior to the conductor is equal to the
surface charge density at its boundary.

Boundary Condition 4

The fourth boundary' condition follows
from the last of Maxwell’s equations. Once
again this is a divergence relation, so that
the integral equation (2.8) yields a normal
boundary  condition. The  boundary
condition here (in Fig. 2.4) is analogous to
the one in Fig. 2.3 but for the fact that there
cannot be a magnetic charge density within




an enclosed volume. This follows from the
well known observation that magnetic
monopoles do not exist. Hence applying eq.
(2.8) with reference to the Fig. 2.4, we get
(2.30)

As Ay tends to zero, eq. (2.30) yields

(2.31)

Once again, since the v-component is
normal to the surface, we can write

(2.32)

Equation (2.32) is essentially a statement of
conservation of the magnetic llux lines with
respect to any enclosed volume. The fourth
boundary condition therefore states that the
normal components of the magnetic flux
density are continuous across the junction of
two media.

The four boundary conditions discussed
above are of relevance to stealth-type
applications. To begin with, they constitute
an important step in the determination of the
RCS of aircraft. Aircraft surfaces are often
metallic, and hence are conducting in
nature. Tangential and normal boundary
conditions can be applied to the problem of
interaction of radar waves with the aircraft
surface, where the boundary is idealized as
a conductor-free space interface.

These boundary conditions, in fact, fomi the
starting point for the EM Held analysis,
even if the aerospace target is partially
conducting or dielectric in nature. The
method of moments (MoM) and the finite
difference time domain method (FDTD) are
two wtll known approaches applied in such
cases; they are discusscd in detail in Chapter

|k




These methods rely extensively on the
application of the proper boundary
conditions. Finally, the application of RAM
coating onto the aircraft surfaces can be
handled in two stages. The EM wave first
impinges on the free space-RAM interface.
This is a dielectric-dielectric interface, for
which the normal and tangential boundary'
conditions have been derived here. The
RAM coating is often on the metallic
surface of the aircraft. The boundary
conditions outlined here also help analyze
the aircraft metal surface-RAM boundary
which may be a dielectric-conductor
interface.

2.3 CONSTITUTIVE RELATIONS
AND FEATURES OF THE MEDIUM

The Maxwell equations in Section 2.1
describe four EM vectors, viz. F., D. H, and
B; the corresponding tangential and normal
boundary conditions due to the curl and
divergence equations are derived in Section
2.2. It is however customary to express
wave propagation through free space and
other material media, in terms of the electric
and magnetic field strengths, F. and H,
respectively. This is rendered possible by
resorting to the constitutive relations of the
medium  which relate the electric
displacement density D and the current
density J to E, and the magnetic flux density
B to H. This may be symbolically expressed
for a general medium as




where r is the position vector, and at, the
angular frequency which is related to the
operational frequency fas co= 2nf. In egs.
(2.33) through (2.35), t denotes the time
instant.

In the case of free space, D is collincar with
E. and B with Il. The constitutive relations
are of the form

The symbols £t, and p” appearing in egs.
(2.36) and (2.37) are known as the
permittivity and permeability of the free
space. These are fundamental constants of
electromagnetics with values

s0 = 8.854 x 10 12 Farad'meter (2.39)

and

/110 =4/7x10 Henry/meter (2.40)

There are a wide class of materials w ithin
which the above mentioned collinearity
relations of the vectors D and J with E. and
B with Il are still valid, but they cannot be
related by ~ and pO alone. They can
nevertheless be expressed as scalar
relations:

where e. //and txare the permittivity,
permeability and conductivity of the
medium. In this book we refer to these
collectively as the intrinsic KM parameters
of the medium. Quite often, the permittivity
and permeability of the material are
expressed relative to the free space
constants and fi#.




where £, is the relative permittivity or the
dielectric constant, and p, is called the
relative permeability.

The magnitudes of the EM vectors D, B and
J in eq. (2.41) through (2.43) are in general
different front those obtained in egs. (2.36)
through (2.38). At the macroscopic level
this is explained by the fact that t and pof a
material medium are different from those
for free space. However at the microscopic
level this is explained by the fact that the
medium is constituted by charged particles.
When an electric or magnetic field is
applied on a medium, the molecules and the
atomic particles tend to align along the
impressed field. This leads to the concepts
of electric and magnetic polarizations of
materials. The electric polarization P is
defined as

P = £0Xt F- (2.46)

where y t is the electric susceptibility of
dielectric medium. The magnetic
polarization, or magnetization is similarly
defined in terms of the magnetic
susceptibility of the medium as

M =//<>* H (2.47)

The electric (or magnetic) polarization of
the materials alters the electric displacement
(or magnetic flux) density within a medium
due to an impressed field. Thus the electric
displacement density within a dielectric
medium may be expressed as the
superposition of the electric polarization on
the free space field,

D = fOE + P (2.48)

Substituting the electric polarization vector
definition (2.46) in (2.48). we obtain




D-,0E +,0*.E = *o(l + *))E

From eqgs. (2.41), (244) and (2.49), we
conclude that
Xt=cr~\ (2.50)

It follows that just as tr, /eis a dimensionless
parameter.

An analogous definition is employed in case
of the superposition of free space magnetic
field on the magnetic polarization field to
give

Once again, a similar comparison with
respect to egs. (2.42) and (2.45), relates the
dimensionless  physical parameter the
magnetic susceptibility to the relative
permeability of the medium as:

It is apparent from egs. (2.36) and (2.37)
that the electric displacement density and
the magnetic flux density vectors. D and B.
corresponding to the free space fields are
linear. Hence, if the electric polarization P is
linear with respect to E, and so also the
magnet it polarization M with respect to H.
the corresponding expressions for 1) and B
in egs. (2.48) and (2.51) are also linear.
Media obeying these conditions are said to
be linear media. It is also possible that the
polarization resulting from the applied Held
Is not linear. Such media are identified as
nonlinear in which and /,, become nonlinear
functions of F. and H. respectively.
Examples of such nonlinearity are
frequently encountered in the cases of the




ferroelectric materials, e.g. barium titanate
and Rochelle salt (Havt. 1989).

Digressing slightly, it may be mentioned
that in engineering one often makes use of
bulk properties, such as density to
characterize a medium. A material is said to
be uniform if its density remains the same
throughout a specified volume. In contrast,
the density of air in atmosphere varies at
different layers. Hence the atmosphere is an
example of a nonuniform medium. Drawing
upon this analog for electromagnetics, we
identify a medium as a homogeneous one, if
its characteristic properties, namely // and a
remain invariant. If these parameters
become a varying function of the space
coordinates, the material is said to be
inhomogeneous.

The electric polarization P resulting from an
impressed electric field E in a medium tends
to lag behind it. This can be mathematically
represented by assuming a complex form
for the electric susceptibility and hence the
dielectric constant of the medium.

A similar expression can be obtained from
the magnetic polarization M as
ftr= K-jPr (2 54)

The imaginary parts of the egs. (2.53) and
(2.54) are related to the polarization losses
within the medium. Vet another loss
mechanism is due to the finite but small
conductivity of the dielectric medium. All
those materials where cither of the two
mechanisms results in an appreciable loss of
energy are said to be dissipative. Otherwise
the medium is a nondissipative one.




The materials in which € and // are
frequency-dependent are  known  as
dispersive media. The idea that the intrinsic
characteristics of a medium could vary' with
frequency is not as incongruous as it might
appear in the first place. Many common
phenomena are explained by these. For
example, it is well known that a light ray
bends when it traverses from air to glass.
The bending of light in glass is proportional
to the frequency of light of different colors.
Hence it is due to dispersion that white light
is resolved into various colors by a glass
prism. Glass is a dispersive material in the
optical region. A medium where the
variations in e and // as functions of ware
not apparent, is called a nondispersive
medium.

For a dispersive medium, the real and
Imaginary parts of the relative permittivity
are given by the Kramers-Kronig relation as
(Portis, 1978):

where

dio) = £'(to) - jc"(e0)  (2.57)

It may noted that in the relations (2.55) and
(2.56), the real and imaginary parts of
permittivity are expressed as a function of
each other. The solution for these integrals
in the microscopic domain is of the form:

where N, m, q and rare the corresponding
constants in the atomic domain (Jordan &
Balmain, 1968). By substituting egs. (2.53)
in (2.50) we obtain the complex form of
electric susceptibility as:

1l




With reference to eq. (2.63), a permittivity
ellipsoid (Fig. 2.5) may be visualized with
three unequal axes £n, £n and ff33. A
material defined by the relation (2.63) is
said to be biaxial. If <.'n=c22, the general
ellipsoid becomes an ellipsoid of

Figure 2.5 The permittivity ellipsoid for a
biaxial media

revolution, and the material is identified as a
uniaxial one. Finally the ellipsoid reduces to
a sphere when eu = %= £}}, and the
material is obviously an isotropic one
(Cheng, 1989). A similar reasoning holds
for the permeability’ tensor as well.

We have so far considered only those media
which do not have the crosspolarization
effects. It is possible to set up anisotropic
constitutive relations where D and B are
expressed as bivariate functions of E and H.
4 and C are the magnetoelectric
crosspolarization dyadics (Sihvola, 1995).
The materials obeying the relations (2.65)
and (2.66) are known as the bianisotropic
media. In the special case, where all these
are identity tensors the medium is said to be
bi-isotropic.

Another important concept with the
characterization of the medium is its
reciprocity which could be defined
analogous to the circuit theory' definition. A
medium is reciprocal if the response at an
observation point due to the field radiated
by a source at a transmitting point is
invariant when the transmission and
observation points are interchanged. In a
reciprocal medium, the permittivity' and
permeability tensors are symmetric for a




plane wave excitation:

In addition to these, for a reciprocal bi-
isotropic  medium, the magnetoeletric
crosspolarization dyadics are also inter-
related:

Materials for which condition (2.68) is not
satisfied are known as nonreciprocal
materials. For a given polarization, this
results in the asymmetry in attenuation and
wave velocity' for £tN (Bergmann, 1982),
where N denotes the direction normal to the
wavefront.

To conclude, in this section we have
presented the general characteristics and
broad categorization of materials. A
material can be identified as belonging to
more than one of these classes. For
example, free space is a linear,
homogeneous, nondissipative,
nondispersive, isotropic and reciprocal
medium. Likewise, a medium which is
simultaneously bianisotropic and
nonreciprocal is  classified as a
nonreciprocal bianisotropic medium. A
theoretical discourse on this class of
medium is important in the context of RAM
and shall be elaborated upon in Section 2.5.
In the next section we propose to set up the
wave propagation for some of the most
commonly encountered media.

2.4 EM WAVE PROPAGATION

In a typical radar target scenario, the EM
waves emanating from the radar travel
extremely large distances in free space as
compared to the operational wavelength.
The waves then strike and are scattered by
the target, which may be either conducting
or dielectric in nature. The detailed




scattering mechanism however requires
analysis of the propagation of EM waves
not only over and along the surface but also
within the medium. Thus the wave picture
that emerges is not only that of free space
propagation but also of EM wave
propagation within various other media. In
general these media, as discussed in Section
2.3, could be linear or nonlinear, lossy or m
lossless, dispersive or nondispersive,
homogeneous or inhomogeneous, isotropic
or anisotropic, and even reciprocal or
nonreciprocal. The naUire of propagation of
the electric and magnetic fields at a given
observation point within each combination
of these media is different. However these
characteristics of the medium are not
mutually exclusive. Free space for example
is not only an isotropic but a linear,
homogeneous, lossless and nondispersive
medium as well.

In this section we therefore set up wave
equations for EM propagation within
commonly encountered media. It must be
pointed out that the wave equations
presented in this section are well known in
electromagnetics. Hence we shall desist
from deriving these equations. We shall
restrict ourselves to stating Maxwell’s
equation as applicable to each case. The
corresponding constitutive relations are also
pointed out. This is followed by the wave
equation corresponding to EM propagation
within the medium.Radar waves travel large
distances as compared to the wavelength;
hence using the ray picture, it can be
assumed that two neighboring wavefronts
are always almost parallel. This is idealized
by assuming a plane wavefront for the




purpose of the analysis given below.
Furthermore it is assumed that for a wave
propagating in the z-direction, it is a
function of time t, and of the z- coordinate
only. A similar condition holds for the
propagation along the x- and y- directions.

2.4.1 Free Space Propagation

Propagation in free space is a very
significant fraction of the entire path that the
radar waves traverse between the source and
the observation radar. Since there are no
charges in free space, J=0, and p= 0; the
Maxwell equations given in egs. (2.1)
through (2.4) are accordingly modified
toThe constitutive relations for free space
are given in egs. (2.36) through (2.38).
Following a few simple steps of vector
calculus operations on egs. (2.69) through
(2.71), and by appropriate substitution of
constitutive relations, one obtains the wave
equation corresponding to the electric field
propagation in free space (Jordan &
Balmain, 1968),

(2-73)

The wave equation for the magnetic field
propagation similarly follows from egs.
(2.69), (2.70) and (2.72),

(2.74)

The assumption of plane wave propagation
along with the wave equations (2.73) and
(2.74) makes it possible to define the
characteristic impedance of free space as
(2.75)




which is approximately equal to 377 fi.
2.4.2 Propagation through a Homogeneous
Medium

The wave equations for free space
propagation can be readily extended to the
case of a lossless homogeneous dielectric
medium. Such a medium can be considered
as a charge free, nonconducting one, where
<7=0. The constitutive relations for such a
meditmrar® already stated in eqgs. (2.41)
through (2.43). The corresponding wave
equations are

The characteristic impedance of .n a
medium is obtained as

Finally, the velocity*of propagation in a
lossless homogeneous dielectric is

If the medium is conducting in nature; the
conductivity is of finite non-zero value. The
constitutive relations are once again given
by eqgs. (2.41) through (2.43). and the
corresponding wave equations obtained are

The solution of the second-order differential
equations (2.80) and (2.81) is facilitated by
adopting a phasor form for all the EM field
vectors. The Maxwell equations (2.1)
through (2.4) can be written for a
conducting medium as

The phasor forms have been obtained by
replacing each differentiation with respect
to time with j(o. The wave equations (2.80)
and (2.81) can similarly be written now

as




where / is the propagation constant of the
wave in a conducting medium. From eq.
(2.86), we get

The propagation constant thus is a complex
parameter symbolically denoted as y = a +
jft ~ (2.89)

in which a is the attenuation constant, and p
the phase constant or the wave number.
Comparing equations (2.88) and (2.89), one
obtains (Ramo et a!., 1994):

At this point we recall the complex form
(2.53) for the permittivity. If the ratio e”/e'r
Is significant, it is said to be a lossy
dielectric. On the other hand, if

<J» (OS

the conducting current density is much
larger than the electric displacement current
density’, and such materials are called
conductors.

2.4.3 Propagation through an
Inhomogeneous Medium

One often encounters a situation where the
medium of propagation is not uniform. If
one considers a large volume of a bulk
medium, it is possible that it consists of
distinct layers. This may be due to the
variation of density’ within a class of
material itself. The atmosphere is one such
example, where the layers in the vertical
direction decrease in density. Yet another
example is polyurethane foam (PUF). PUF
Is essentially a generic material, where the
variation in density is controlled by the
porosity within. From an EM perspective




this is equivalent to a change in the
properties of the medium, such as the
permittivity, permeability etc. with respect
to location. The constitutive relations for the
inhomogeneous medium, consistent with the
general form (2.33) through (2.35) are
therefore expressed as

For a lossy inhomogeneous nonconducting
medium where there are no charges and
current sources, ed. (2.95) reduces to J=0.
Starting with the phasor form of the
Maxwell equations (2.82) through (2.85),
the equation for the wave propagation
through the inhomogeneous medium may be
obtained as (Brekhovskikh 1960)

If the variation of the properties of the
medium in space is sufficiently small, the
last term on the LI IS of eq. (2.96) can be
neglected. The form of wave equation is
then akin to eq. (2.86):

where

The magnetic field vector is derived in an
analogous manner, and is given as
V2H=[/(r)]2H (2.99)

It is customary' to characterize the layers of
inhomogeneity as linear, exponential,
inverse square profile etc.. Solutions to the
wave equations for these special profiles are
well known (Wait, 1970).

To conclude, equations have been set up in
this section to determine the fields for EM
wave propagation in the various commonly
encountered media. The field at a given




observation point is shown to be affected by
the intrinsic EM parameters of the medium.
This discussion is relevant in the context of
RAM where the primary motivation is to
reduce the EM energy in the direction of
observation.

25 EM PARAMETERS FOR RADAR
ABSORBING MATERIALS

The absorbing medium, as the name
suggests, “absorbs” energy when an
electromagnetic wave propagates through it.
This often results Tn significant reduction
in EM energy scattered in the direction of
the radar. In this section we study the EM
parameters which effectively make a
material medium absorbent in nature.

2.5.1 The Loss Tangents

We start with the Maxwell-Ampcre law
(2.2), and substitute the constitutive
relations (2.41) and (2.43) for a general
linear conducting medium to obtain

which in the phasor form can be written as
V  xH=jmtX. + oE (2.101)

It follows from eqgs. (2.44) and (2.53) that
the complex permittivity can be defined as
e=£-je" (2.102)

where the impressed electric field is
assumed to result in electric polarization
Substituting eq. (2.102) in (2.101), we get

In eq. (2.103). the first term constitutes the
conduction current and is dissipative in
nature. The second and third terms
correspond to the dissipative and
nondissipative or ‘“stored" components of
the electric polarization current,




respectively. It is instructive to denote the
dissipative (or the lossy part) and the
“stored" components separately as (Plonus,
1978):

The ratio of lossy to stored component is
known as the electric loss tangent which is
expressed as

The dissipative energy is said to have been
“absorbed" by the medium. Thus for the
medium to be an effective absorber, tan&.
should be as large as possible.

Since the lossy term of the polarization
current is frequency dependent, it is possible
that cos" » a beyond a certain frequency.
This indeed is the case for dielectric
materials where the conductivity is low. For
such dielectric absorbers, the electric loss
tangent is given by

—

The absorption however is not the only
mechanism by which RAM operate. The
reflections at the RAM boundary could be
controlled by designing the coatings
properly. The principles applied here are
those of phase cancellation and impedance
matching. These are essentially dependent
on the permittivity and permeability of the
material, and will be discussed in detail in
subsequent chapters.

The discussion so far in this section is
applicable to the simple media which
constitute most of the conventionally




studied RAM. There are other equally
Important aspects, such as nonreciprocity,
magnetoelectric crosspolarization etc., for
the electromagnetic medium which can be
utilized to design effective RAM. These
materials, of which the class of chirals is
just one example, arc studied at length to
identify the KM wave propagation
parameters of interest.

2.5.2 Bianisotropic Materials

Isotropy and reciprocity are two commonly
assumed characteristics of the material
medium. As already discussed in Section
2.3, and well-elucidated by Post (1962), this
by contrast provides a fundamental basis for
hypothesizing the existence of a material
medium which may exhibit anisotropy and
nonreciprocity. The anisotropic materials
are in fact a common occurrence; the
examples of these are crystals, such as
calcite and quartz which exhibit uniaxial
anisotropy (Jenkins & White, 1957). On the
other hand As2Se, and Bi,Te, crystals are
biaxial in nature.

The concept of anisotropy can be further
generalized to  account  for  the
magnetoelectric polarization, leading to the
class of bianisotropic materials.
Incorporation of nonreciprocity in these
media offers the possibility of the
nonreciprocal bianisotropic materials. The
constitutive relations for the bianisotropic
medium are already given by egs. (2.65) and
(2.66). A more convenient form
incorporating nonreciprocity and
bianisotropy can be written as:

where K is called the chirality dyadic.




whereas ¢/ 's known as the nonreciprocity
dyadic (Sihvola, 1995).

For Dbi-isotropic materials, the tensors
involved in egs. (2.107) and (2.108) reduce
to scalars. Thus the constitutive relations for
nonreciprocal bi-isotropic (NRBI) medium
becomes

These equations are akin to those derived by
Kong (1975). Even though the
magnetoelectric coupling is predicted for
the NRBI medium on theoretical grounds,
the existence of such material itself has been
shrouded in controversy. Lakhtakia and
Weiglhofer (1994) have provided an elegant
mathematical analysis with the help of
covariance relations of Post (1962), to argue
that such a material cannot exist. This has
been disputed by Sihvola (1995) who
objected to the assumptions leading to the
analysis, and suggested that chromium
oxide and the phenomenological Tellegen
material could be thought of as examples of
the NRBI materials.

2.5.3 Chiral Medium

By setting the condition for reciprocity, that
IS x= 0, in egs. (2.109) and (2.110) we
obtain the constitutive relations for the bi-
isotropic reciprocal medium. These are
commonly known as the chiral media. Thus
for a chiral medium the constitutive
relations are:

which involve a chirality parameter K in
addition to the commonly conceived EM
parameters e and //. This new parameter
accounts for the optical activity and circular
dichroism observed in the chiral materials.




We digress slightly to explain these
phenomena for a better understanding of the
characteristics of these materials.

Figure 2.6 Optical activity in crystals The
rotation of plane of polarization,

PoP2 \s ith respect to PoPl is a characteristic
of optically active crystals.

Opticul Activity

It is widely known that the plane of
polarization of a light beam (the plane
defined by the propagation and electric field
vectors) undergoes rotation due to its
traversal within certain crystalline media
(Fig. 2.6). This is a reciprocal phenomenon
and is called optical activity or rotatory
power (Wood, 1964). One commonly
encountered medium which shows such a
property’ is the a-quartz (Lovett, 1989).
Sodium chlorate, iodoform, cinnabar,
Rochelle salt, and tartaric acid cry stals are
some of the other well known optically
active materials (Wahlstrom, 1979). The
direction as well as the degree of rotation
for the plane of polarization are intrinsic
properties of these crystals.

The explanation for this optical activity is
given terms of the two different circularly
polarized light beams (right- and left-
circularly polarized, or RCP and LCP)
propagating through the crystal. It can be
easily proved that only the RCP and LCP
modes of propagation are possible within an
optically active crystal (Kong, 1975). The
incident linearly polarized light thus splits
into the RCP and LCP beams as it enters the




cry stal. Optically active crystals are
therefore identified by twro separate
refractive indices. At the end of the path
through the crystal, the two circularly
polarized light beams add up once again,
but result in a different plane of polarization
which is attributed to the unequal values of
the two refractive indices.

This rotation is also dispersive in nature,
thus implying that the optical activity
depends on the geometry of the crystals. It
Is now possible to identify other composite
materials exhibiting such behavior in the
microwave region as well.

Circular Dichroism

Dichroism is yet another optical property' of
crystals where the absorption coefficient is
different for light waves with two
orthogonal polarizations. A common
example of the material showing dichroism
is tourmaline (Jenkins & White, 1957).
Even if the incident light at the first
boundary of the tourmaline crystal is

unpolarized in nature, it results in a
transmitted wave of one particular
polarization at'the other boundary

Furthermore, if a second tourmaline cry stal
which has been rotated by 90° is placed in
the path of this polarized light beam, it
completely eliminates the transmission of
the light waves.

The concept of dichroism can be further
extended to optically active cry stals which
permit two differently circularly polarized
modes of propagation. There are two
different absorption constants associated
with the RCP and LCP modes of
propagation within such media. When a
linearly polarized light is incident on an




optically active crystal, the two RCP and
LCP components within the crystal not only
traverse at different velocities, but also are
absorbed unequally. The net effect at the
transmission boundary is a light beam

which is elliptically polarized. This
phenomenon is known as circular
dichroism.

Wave equations in a cliiral medium

The equations for the FM wave propagation
through a chiral medium can be derived by
substituting the constitutive relations in
Maxwell’s equations. It is apparent from the
literature that there are various versions of
the constitutive relations. The discrepancies
arise from the argument that the constitutive
relations ought to be given for D and H,
since E and B are considered to be the
“primary electric and magnetic fields." For
example, the constitutive relations obtained
by Jaggard NENCACICONEISE. (1979) are of the
form

(2.113)

(2.114)

in which / is known as the cliirality
admittance. Yet another form was employed
by Jaggard and Engheta (1989) to describe
Chirosorb™, a reciprocal bi-isotropic chiral
medium as

(2.115)

(2.116)

The similarity of egs. (2.115) and (2.116) to
the egs. (2.113) and (2.114) is too close to
be commented upon. Obviously, £ refers to




the chirality admittance oncc again.

A notationally similar fomi has been
presented by Bassiri et at (1988) for a study
of dielectric-chiral medium interface.

We rewrite egs. (2.115). and (2.116) in a
form consistent with those given in this
book.Observe that eq. (2.118) has been
made use of in deriving the constitutive
relation (2.117) . It is possible to
establish a correspondence between the IEM
parameters as proposed between the various
sets of constitutive relations. Comparing
eqs. (2.111) and (2.117) we obtain

We also mention in passing, that the

equivalence (2.119) is dimensionally
consistent. Similarly, it follows from the
equivalence (2.120) that the chirality

parameter K is a dimensionless quantity.

A comparison of egs. (2.112) and (2.118)
shows that under this equivalence
permeability remains an invariant.

(2-121)

Relations (2.119)
utilized for writing down a
transformation conditions

through (2.121) are
set of

Substituting eq. (2.122) in the egs. (2.117)
and (2.118) yields the constitutive relations
(2.111) and (2.112) referred to in the
beginning of this section.

To set up the electric field wave equations
for the chiral medium, we substitute the
constitutive relation (2.111) into the phasor




form of Maxwell’s equation (2.82)
\/ X H = jcole fc - jKyJfi0e0 H)

In the equation above, we assume that there
are no conduction currents, i.e., J=0. By
rearranging the terms in the constitutive
relation (2.112) and substituting in eq.
(2.123) above for H, we obtain

By distributing ja over the terms, and
identifying Maxwell’s equation (2.83), we
get

Further taking the curl of both sides of eq.
(2.83), and substituting (2.112), we write

Substituting eq. (2.125) in the equation

above, we obtain the wave equation as

V  xV XxE + 2ro\yJ{i0£0 V x E-co2[/jE-

/JOEOk'2)E=0  (2.127) The magnetic

field wave equation can be obtained

likewise.

V XV x H+ 2coKyJfioEO V x H -
HOE£Q,K2)h =0

The characteristic impedance of the chiral

material is defined as

Z=J-. (2.129a)

It is convenient to refer to Zc as the chirality
characteristic impedance or just chirality
iImpedance to distinguish it from the
characteristic impedance definition in eq.
(2.78). By using the equivalence relations
(2.119) and (2.121), one obtains

(2.129b)




Observe that eq. (2.129b) is similar to the
expression derived by Jaggard & Engheta
(1989). The wave numbers /?,,
corresponding to the RCP and LCP modes
of propagation within the chiral, are given
as

P+ = <° [JJie **- y]/0co0)(2-> 30)

The inequality of the wave numbers for the
two modes of propagation in the chiral
medium results in the rotation of the plane
of polarization which is analogous to the
well known phenomenon of optical activity
in the case of crystals. Similarly, the
attenuation constant can be shown to differ
for (he two polarizations due to circular
dichroism.

To summarize, EM parameters of interest in
the context of RAM are the electric and
magnetic loss tangents which are the ratio of
the imaginary and real parts of permittivity
and permeability, respectively. For a more
general class of material, it is possible to
hypothesize magnetoelectric coupling. Two
electromagnetic  tensors  called the
nonreciprocity dyad and the chirality tensor
offer considerable flexibility in the design
of such RAM, of which chiral RAM is the
most popular example.

2.6 SUMMARY

In order to analyze a RAM, it is necessary
to identify EM parameters which help
characterize the absorptive properties of the
RAM. The starting point for RAM analysis
Is the Maxwell equations. These equations
can be expressed in both the differential and
integral forms by making use of Stokes’
theorem and Gauss’s divergence theorem.
The Maxwell equations essentially relate the




four EM vectors E. II, 1) and B. Using the
integral form of these equations, it is
possible to obtain boundary conditions for
these vectors at the interface between two
media. These media could be of entirely
different EM characteristics, e.g., a
dielectric-dielectric interface or a dielectric-
metal interface, as are often encountered in
the analysis of RAM coated aerospace
bodies.

Although the Maxwell equations consist of
apparently independent equations, the two
divergence relations can be readily derived
from the two curl equations. Furthermore it
is possible to express the EM wave
propagation equations within a medium
with only two EM field vectors, viz., E and
FI by the use of the constitutive relations.
However the constitutive relations for EM
vectors are themselves different for the
various classes of media. These media can
be broadly classified as being (i) linear or

nonlinear, (i) homogeneous or
inhomogeneous, (iin) isotropic or
anisotropic, (iv) dissipative or
nondissipative, (V) dispersive or
nondispersive, and (vi) reciprocal or

nonreciprocal. Hence the corresponding
wave equations for the various media arc
also different.

In-depth study of the constitutive relations
also provide some fundamental results about
the general behavior of the EM
characteristics of the materials. The
Kramers- Kronig relation is one such result




offering insight into the qualitative nature of
both the real and imaginary parts of the
electric  susceptibility. Studies of the
constitutive relations over conventional
materials show that the absorbed EM energy
Is dissipated eventually. This is related to
the imaginary part of the permittivity. A
parameter of interest in the case of RAM is
the electric loss tangent. Likewise, the
magnetic loss tangent is also a RAM
parameter. The reduction of the backscatter
which is the essence of RAM on aerospace
structures, can also be implemented by
phase cancellation. The concept of
characteristic impedance is used in the
context of RAM design which again is
related to the permittivity and permeability
of the material.

From a theoretical perspective, it is possible
to visualize a general class of nonreciprocal
bianisotropic media where E and H are
functions of both B and D. The
corresponding EM parameters relating these
general constitutive relations include the
chirality and nonreciprocity dyadics which
are of the tensor form. The chiral RAM is a
special class of this type, which is bi-
isotropic and reciprocal in nature. It has also
been shown in this chapter that the various
constitutive forms proposed in the literature
for chiral materials are equivalent.
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MATHEMATICAL ANALYSIS FOR
RAM ON SURFACES

Fundamental concepts involving the
analysis of RAM were introduced in the
previous chapter. Various classes of
material media were identified and
expressed in terms of their constitutive
relations. Wave equations were also set up
for EM  propagation using these
constitutive relations within these media.
Two important EM parameters namely
characteristic impedance of the medium
and propagation constant were also
obtained in the context of EM wave
propagation. It was shown that the complex
nature of permittivity and permeability is
primarily responsible for electric and
magnetic losses, and hence the attenuation
within a medium. The finite conductivity of
the material also results in electric loss
which also is incorporated in the total
electric loss. Furthermore, by generalizing
the constitutive relations to incorporate
magnetoelectric crosscoupling, one obtains
a chirality parameter which provides an
additional parameter in the design of chiral
RAM.

In reality however RAM arc rarely studied
in isolation, since they are often coated
onto other metallic structures to reduce
backscattcr RCS. This results in a metal-
backed dielectric free space interface. It is
of interest to study the effects of EM wave
incident on such a surface. The boundary
conditions derived in Chapter 2, are
relevant in this context. In Section 3.1 the
reflections at the interface of two media are
studied for both normal and oblique
incidence; this is extended to multilayered




RAM coatings on planar surfaces.

A planar surfacc however is often an
idealization. In the context of aerospace
engineering, the constituent surfaces of a
hybrid shape are curved. In the second half
of this chapter we discuss EM scattering
and diffraction from curv ed surfaces.
Since EM analysis is done w ith respect to
the electrical wavelength, the analytical
methods described in the latter part of the
chapter are identified as low frequency and
high frequency methods. The low!
frequency methods are essentially grid
based. The method of moments (MoM) and
finite difference time domain (FDTD)
method arc the most versatile examples of
these. The fundamental principles involved
in these analyses are followed by a
discussion of their applications including
those in RAM coated low frequency
scatterers in Section 3.3. High frequency
methods are in contrast formulated as an
extension of the geometrical optics (GO).
The most important amongst these are the
geometrical theory of diffraction (GTD),
physical optics (PO) and the physical
theory of diffraction (PTD). These are
outlined in Section 3.4.

3.1 ELECTROMAGNETIC
REFLECTIONS AT PLANAR
BOUNDARY

In Section 2.2 we have derived the
boundary condition for the tangential and
normal components of the electromagnetic
(FM) vectors. These results can be




employed to determine the reflections at an
interface between two media. We first
study the case of the normal incidence
which is followed by the generalization to
the relatively more complex case of the
oblique incidence.

3.1.1 Normal Incidcncc

In the context of FM reflections, perhaps
the most common example is that of the
planar interface between free space and a
semi-infinite  medium. This can be
generalized to the case of normal incidence
at a planar interface between any two
media as shown in Fig. 3.1. The
electromagnetic wave incident at the planar
interface is split into a transmitted
component in Medium 2 and a reflected
component in Medium 1. For the normal
incidence, the electric and magnetic field
vectors arc tangential to the interface.
Hence from the Boundary Conditions | and
2 in (2.14) and (2.23), we get:

E.+E =E

H, +Hr=H

where the subscripts /', r, and t are
employed to denote EM field vectors
corresponding to the incident, reflected and
transmitted waves.

We have already defined the characteristic
Impedance in terms of the intrinsic
properties of the medium in eq. (2.78). The
characteristic impedance can be employed
to relate EM field vectors for the incident,
reflected and the transmitted waves
(Stratton. 1941):




Figure 3.1 EM wave rcdcclion and
transmission al an interface between two
media

where Z, and Z2 are *he characteristic
impedances of Media | and 2, respectively.
Substituting egs. (3.3) through (3.5) in
(3.2), we obtain

so that

By substituting for E, in eq. (3.1) with the
expression above, and rearranging terms,
one obtains the transmitted electric field.

The ratio E/E, is defined as the
transmission coefficient rat the interface
between two media.

Eliminating E, between egs. (3.1) and (3.6),
the reflected electric field E, becomes:

The ratio E/E, is callcd the reflection
coefficient and is denoted as p which in
terms of the characteristic impedances of
the two media is:

In the context of RAM, we often encounter
situations which can be modeled by a thin
flat slab sandwiched between two media.
To proceed with this analysis, we first
analyze the problem where Media 1 and 3
are idealized as being semi-infinite along
the direction of propagation, as shown in
Fig. 3.2a. The analysis in such cases is
made tractable by drawing upon an analog
in the transmission line theory. The
transmission line equivalent circuit of Fig
3.2a is represented by Fig. 3.2b where d
corresponds to the thickness of Medium 2.
One defines an input impedance Z,.,,:




which is the effective impedance as seen by
the incident wave at the interface between
Media | and 2.

The reflection coefficient at the interface
between the Media | and 2 can be obtained
by replacing Z2 in eq. (3.11) by the Z,,,
obtained from eq. (3.12),

..., Medium 3 Medium 2

Figure 3.2 (a) Schematic and (b)
transmission line equivalent circuit for EM
wave propagation through a thin slab
between two semi-infinite media

If Medium 3 is metallic in nature (Fig. 3.3),
the value of its impedance approaches
~zero. In such cases, the reflection
coefficient reduces to

It is possible to select the thickness of the
slab so that the numerator in the equation
above, and hence the reflection coefficient
is zero. Equation (3.14) is one of the
fundamental equations for the design of
RAM. Thus the condition for zero-
reflection at the normal incidence for a slab
terminated by a metallic load is given by:

Observe that the propagation constant / is
dependent on the angular frequency (0. It
follows from egs. (2.88) and (3.15) that the
RAM so designed is effective only in the
immediate neighborhood of a resonant
frequency. The operational bandwidth of
such a RAM can be increased by resorting
to multilayered design (Fig. 3.4). For such
multilayered structures, Z,,, is determined




by taking all the successive layers into
account. The input impedance Z,,,, in fact is
a recursive relation, and is a function of the
Impedances and propagation constants
corresponding to each layer encountered by
the EM wave. These aspects shall be
further elaborated upon in Chapter 4 when
we take up the design of broadband RAM.

Figure 3.3 A 2-layered RAM coating over
a metallic surface
Multilayered

Figure 3.4 A mullila>ered RAM coaling
over a metallic surfacc Equation (3.14)
may be extended lo analvze such coatings

3.1.2 Oblique Incidcnce

In the more general ease of oblique
incidence, (he EM field vectors associated
with the ray are not entirely tangential (Fig.
3.5). The tangential components of these
vectors are considered for applying the
Boundary Conditions 1 and 2 outlined in
Section 2.2,

With reference to Fig. 3.5 we define the
angle of incidence 0,, as the angle that the
incident ray makes with the surface normal
at the point of incidence. The angle of
reflection Or, and the angle of refraction O,
are similarly defined with respect to the
reflected and transmitted rays, respectively.
The phenomena of reflection is dependent
on the local property of the interface. The
laws of reflection for EM waves (Stratton,
1941) require that:




1. the incident ray, the reflected ray,
and the surface normal be coplanar: and

2. the angle of reflection be equal to the
angle of incidence, i.e..
(3.16)

The plane consisting of the incident ray and
the surface normal is called the plane of
incidence.

Similar to the laws of reflection, the laws
of refraction require that the incident ray,
the transmitted ray and the surface normal
be coplanar. The angles of incidence 0, and
the angle of refraction Oh are related to the
ratios of the intrinsic EM properties of the
two material media.

The ratio defined in (3.17) is also the ratio
of the velocity of EM waves inside the two
media:

where v, and v, are (he velocity of
propagation in Medium | and Medium 2,
respectively. Observe that eu c2, f/t, and //,
can be complex in general, leading to a
complex value for eq. (3.17). The velocity
of propagation in eq. (3.18), is then
interpreted as a complex quantity. It is
assumed with respect to Fig. 3.5. that
Medium 2 is semi-infinite in extent in the
direction of the ray propagation.

The plane of polarization is defined as the
plane containing the directions of wave
propagation and the electric field
associated with it. If the plane of incidencc,
and the plane of polarization are
orthogonal, it is referred to as
perpendicular polarization (Fig. 3.6). On
the other hand, if the plane of incidence




and the plane of polarization are parallel
(Fig. 3.7), the polarization is said to be
parallel.

Perpendicular Polarization

In the case of perpendicular polarization,
the incident electric field E, is normal to
the plane of incidence, and therefore
tangential to the interface (Fig. 3.6).
However the incident magnetic field H,,
which is orthogonal to F.,, must be resolved
at the interface to obtain H,OT, the
component parallel to the plane tangential
to the interface. Thus in the case of
perpendicular polarization, applying the
boundary

Figure 3.6 The reflection and refraction of
an EM wave wilh perpendicular
polarization at an interface.

conditions for the tangential components of
the electric and magnetic fields leads to:

Substituting egs. (3.3) through (3.5) in eq.
(3.20b), we obtain E, costf, ErcosOr E,
costf,

Thus the perpendicular polarization
reflection coefficient pL for the oblique
incidence is derived as

We obtain the cosine of the angle 0, from
Snell’s law (3.17)

Figure 3.7 Kcllection and refraclion al the
interface

Parallel polarization
and substitulc in eq. (3.22) to derive pL as
a function of 0,,




Parallel Polarization

When the electric field is parallel to the
plane of incidence, the incident electric
field E, is in general resolved to obtain its
tangential component along the interface
(Fig. 3.7). In contrast, the incident
magnetic field H, is now aligned with the
interface. Thus the Boundary> Conditions |
and 2 (Section 2.2) yield

E, cos0, - F., cos0, = E( cosO0,

By a treatment similar to that applied for
the perpendicular polarization case above,
we obtain the parallel polarization
reflection coefficient p{

Figure 3.8 A multilayered RAM coaling
over a metallic surface The perpendicular
and parallel polarization cases can be
treated by extending eqgs (3.27) and (3 29),
respective!)

3.1.3 Multilayered RAM Coatings

For multiple layers of RAM (Fig. 3.8), we
treat the general problem of oblique
incidence. The concept of impedance
transformation outlined in egs. (3.12) and
(3.13) is extended for the analysis of this
problem.

Perpendicular Polarization

The reflection coefficient for perpendicular
polarization at the interface between | ayers
| and 2. p+ is obtained as (Klement [Elca8
BORERE., 1933):

where Z,,1Xi( denotes the input impedance
for perpendicular polarization between
these two layers. This is obtained by the




concept of impedance transformation of
successive layers.

Z,1=>, in the equation above denotes the
input impedance at the interface between
the Layers 2 and 3. Obviously this concept
can be generalized to any number of layers,
for which expressions similar to (3.28) may
be obtained by recursion.

Parallel Polarization
The corresponding expressions for the
reflection coefficient, and the input
impedance for parallel polarization at the
interface between Layers 1 and 2 may be
derived as:
We draw the attention of the reader to the
fact that in a typical RCS scenario. Layer
I represents free space whereas the
multiple layers of coatings on the aerospace
target begin with Layer 2 (Fig. 3.8). Hence
the perpendicular and parallel reflection
coefficients at the interface between Layers
| and 2 are of interest in the determination
of the EM backscattcr.
A second point to be noted here is that the
expression given in egs. (3.27) and (3.29)
appear to be interchanged as
compared to that given in some recent
books. However a discerning reader might
have observed that we have derived these
formulae from first principles, i.e., from the
Boundary Conditions | and 2. Our
definitions for perpendicular and parallel
polarizations are similar to those adopted in
the  other classical textbooks in
electromagnetics (Stratton, 1941; Cheng,




1989). Finally, for the particular case of
EM wave incident at an oblique angle on a
metal backed RAM coating, egs. (3.27) and
(3.29) reduce to:

3.2 ANALYSIS OF RAM ON
CURVED SURFACES

The foregoing discussion is valid for the
RAM coatings on flat surfaces in general.
The analysis of coatings on curved surfaces
Is, in contrast, relatively more complex.
Two important results derived by Weston
(1963) facilitate the RCS reduction of the
planar and curved scatterers coated with
RAM. However these require profiles of
specified geometry and suitable coatings as
explained below.

In a typical detection and surveillance
scenario, the monostatic radar is in the
nose- on direction of the target. Hence from
the perspective of incoming fighter aircraft
and missiles, it is important to reduce RCS
in the backscatter direction. It is convenient
to associate a rectangular axis with nose-on
direction which for relatively simple shapes
is often the axis of rotational symmetry as
well. In this discussion we identify this as
the r-axis.

If the scatterer, i.e., the aerospace body is
rotationally symmetric, the profile or the
aspect as seen from any point on the z-axis
would be circular. It is also possible to
visualize other symmetries with respect to
the r-axis. For example, a square cylinder
would offer a square profile from the points




on the 2-axis, which has an angle
invariance for a rotation of 90° (Fig 3.9a).
However, square is not the only shape
which offers this angle invariance upon 90°
rotation. It can be easily shown that all
regular polygons with the number of sides.
p=Ann=123,—

have this symmetry. For n=1 and 2, we get
a square and a regular octagon (Fig. 3.9b),
respectively. In the limit, when the value of
n is large, the profile is a circle (Fig 3.9c).
Hence profiles such as square, regular
octagon, circle etc. are invariant upon a 90°
rotation.

For the purpose of discussion in this
section we identify and label two materials.
These materials which have the property //f
= er are identified as RAMI. On the

Figure 3.9 Bodies with a rotational
symmetry of 90°. (a) Square, (b) Regular
octagon: (c) A circle may be considered as
the limiting case of a 4n-polygon

other hand, coatings which satisfy the
Impedance boundary condition
E-(N*E)YN=ZNxH (3.34)

are labeled as RAM2. In the equation
above, N denotes the unit outward surface
normal.




It has been shown by a rigorous derivation
that if the profile of the scatterer has a 90°
invariance around a given aspect angle, and
(i) the scatterer has been coated with
RAMI, or (i) satisfies the boundary"
condition stated in eq. (3.34), then the
backscattered field corresponding to that
aspect angle reduces to zero (Weston,
1963). This theoretical result is of
considerable  importance  since  the
conditions outlined tend to reduce the
backscattered RCS to a minimum. We
proceed to discuss the possible shapes for
the scatterer for which the 90° angle
invariance is maintained. We also explore
the possible existence of the coatings
identified as RAMI and RAM2,

Since the results mentioned above place the
constraint only on the profile as seen from
the z-axis, various shapes are possible for
the scatterer. For a square profile, one
could think of a cube. However, a square
prism, and a square cylinder could also
satisfy the 90° angle invariance. Hence all
such absorber-coated scatterer shapes can
be employed to achieve the null RCS. A
similar discussion holds good for the
regular octagon. Finally in the case of
circular profile, the corresponding shapes
could be right circular cone, sphere,
spheroid, paraboloid and hyperboloid of
revolution. Thus the importance of
Weston’s result lies in the flexibility' it
offers on the scattering shapes for the nose-
on RCS reduction.

The coating RAMI has been characterized




by the intrinsic property
Hr= (3.35)

It turns out that there are a few absorbers
for which eq. (3.35) is valid. They are
known as // =E absorber. The design and
fabrication of such absorbers have been
discussed in Chapter 4.

For coatings identified as RAM2 the
product (/Y). - — yf") is complex and
large. The imaginary part of permeability
and permittivity /i and E" are also large,
implying that these are highly lossy
materials. RAMZ2 are in fact a subset of the
class of ft =£ absorber.

These results are independent of frequency
and hence, in principle, are applicable to
low-frequency as well as the high-
frequency scatterers. For extending these
results to general convex surfaces,
additional conditions must be satisfied by
these curved surfaces. The impedance
boundary condition at the surface is shown
to be equivalent to the Leontovich
impedance boundary condition, which
requires that for a smooth convex surface:
(@) The two principal curvatures of the
surface vary and n're" + //7£'» 1, (c) the
spatial variation of £, andy/, are negligible,
and (d) the spatial variation of the near
field exterior to the scatterer is small.

All the comparisons made above are with
respect to the wavelength of EM wave
propagation within the scatterer. The
method of analysis is essentially ray-




theoretic, relying on geometrical optics and
geometrical theory of diffraction. The
methods outlined by Fock have also been
utilized in the high-frequency domain. The
results obtained by Weston (1963) can be
extended to predict the backscattcr RCS for
multilayered RAM coatings on smooth
conducting convex bodies (Bowman &
Weston, 1966). Such scatterers have two
components for their backscatter, viz. the
specular, and the diffracted field
contributions. The specular contribution
from an absorber covcred body is |r|2cr.
Here r is the flat plate reflection coefficient,
and a is the specular reflection. The
diffracted field contribution is affected by
the shape of the scatterer, its conductivity
and the direction of the ray with respect to
the axis of the body. A detailed analysis is
given by Bowman and Weston (1966).

To summarize, an absorber with a large and
complex refractive index significantly
reduces the backscattered RCS for convex
scatterers. In the resonance and high-
frequency region, the main contribution to
scattering is from the specular reflections
and the creeping waves.

3.3 GRID BASED METHODS

3.3.1 Method of Moments

One of the methods to analyze this class of
EM scattering and diffraction problems is
the method of moments (MoM)
(Harrington, 1968). The MoM is a very'
versatile and powerful technique which can
be applied to linear, planar, as well as
threedimensional problems. The current
distribution on the entire structure
(including the RAM layer) is treated here




as unknown. The method involves
segmentation of the body and choosing
suitable basis functions to represent the
current on these segments. A set of
equations is generated by enforcing the
boundary condition with a suitable set of
testing functions. This results in a matrix
whose order is proportional to the number
of segments on which the current
distribution is represented. The solution to
the problem is found by inverting this
matrix.

We now present the formal mathematical
structure of MoM. It is assumed that when
a source of excitation q is impressed upon a
system, it manifests in a response p. These
parameters g and p could for example
represent the current and voltage of an
electrical circuit. The physical parameters p
and g can be related by a linear operator L,

The linear operator L is system dependent.
Quite often in the analytical problems, the
source ¢ is well-defined but the response p
is to be determined. A salient feature of
MoM is the hypothesis that it is possible to
represent p by a set of linear basis function

P,
[>=Za<P,

where a, are the coefficients associated the
basis functions. The basis functions are
also know n as the expansion functions. It
may be recalled that such expansions are
not uncommon in electrical engineering. A
square pulse signal is conventionally
expressed in terms of the fourier sine series
with appropriate coefficients. The basis
functions selected are linearly independent,




and are often sinusoidal, step, or triangular
in nature.

The substitution of eq. (3.37) in eq. (3.36)
results in:
(3.38)

Quite obviously, a, are not known a priori
and must be determined. The MoM
overcomes this problem by assuming a set
of testing or weighting functions Just as
with the basis functions, the testing
functions too must be linearly independent.
These testing functions are employed to
define the inner product with respect to eq.
(3.39)

The commutative property of the linear
operator permits the above equation to be
written as

2>,<'m.L(/>,)>=0m<q)

Equation (3.40) in fact is a set of linear
equations which can be symbolically
represented in the matrix form,

where

Assuming that B the inverse of B exists,
Ihe set of coefficients associated w ith the
expansion functions can be evaluated from

For square matrices, an inverse exists only
if the matrix is nonsingular, that is, its
determinant is zero. A,,,, is essentially a
column vector consisting of n coefficients.
The response of the system p can therefore




be expressed as
(3.46)

The time required to invert the matrix B
and the accuracy of the solution obtained
depends on the value of m and n. If the
basis and testing functions chosen are the
same, the analytical procedure is known as
Galerkin's Method (Kantorovich & Akilov,
1964; Silvester & Chan, 1972). This
method results in a symmetric matrix,
thereby satisfying the reciprocity principle
(Moore & Pizer, 1984). If one were to use
the Dirac delta functions as the testing
functions, this results in a point matching
or collocation method which tends to
reduce the computational time
considerably.

In the context of EM problems, the
matrices in eq. (3.41) correspond to
impedance, current, and voltage matrices,
so that the MoM solution essentially
consists of inverting the impedance matrix.
In the case of very simple problems. MoM
yields exact solutions (Harrington, 1968).
However, for the practical EM wave
propagation problems, the order of the
matrix to be inverted is large, and the
solution is found by iterative procedure.
The computationally intensive nature is one
of the constraints on MoM. Considerable
attention is therefore paid to understand the
nature of the matrix to be inverted. For
example, quite often one identifies the
matrix as a Toeplitz matrix, enabling
considerable reduction in the computer
time required during the iterative
procedure.




While applying MoM, a body is frequently
replaced by a wire-grid model. In the wire-
grid model a continuous surface is
approximated by a mesh of finely
connected thin wires (Newman & Pozar,
1978). Almost all complex surface shapes
can be realistically modeled by this
approach. However, in order to improve the
accuracy of the results, the grid size in the
mesh approximating the continuous surface
should be small (Richmond, 1966). The
successful substitution of a wire- grid for a
continuous metallic surface depends upon
the fact that, as the grid size becomes
smaller compared to the wavelength, the
grid supports a current distribution which
approximates that on the corresponding
continuous surface. This current is only an
approximation to the actual current, and as
such it can be expected to predict the far
fields, but possibly not the near fields. This
is due to the fact that the grid supports an
evanescent reactive field on both sides of
its surface (Lee [EHCOCICONEISY., 1976). An
actual continuous conducting surface is not
capable of supporting such a field.

The accuracy with which a wire-grid model
simulates an actual surface depends on the
expansion and testing functions, the radius
of the wire segments, as well as the grid
size. For example, with pulse expansion
functions it has been found that a grid-
spacing of about 0.1 to 0.2 X yields good
results (Richmond, 1966). In certain cases
the grid size can be taken up to 0.25 \ (Lin
& Richmond, 1975). Reduction of grid size
of the mesh which improves accuracy
poses another kind of problem. A finely
knit mesh will require the determination of




a larger number of unknowns. As a
consequence, the order of the matrix will
increase, as also the computer time needed
for inverting this matrix.

An alternative to the wire-grid model is the
surface patch model. Here the surface is
treated as continuous and made up of
regular small surface patches. However, the
current is expressed in terms of two-
dimensional basis functions. In this case,
the order of the matrix is smaller than the
wire-grid model for the same accuracies in
the result. In contrast to the wire-grid
model, the surface patch models do not
allow realistic modeling of complex
surfaces. This method has been applied to
solving the scattering problems of a flat
plate illuminated by a plane wave
(Newman [ENCACHCONEERY., 1984), bent
square plates and canonical problems of
cylindrical surfaces and spheres (Rao [
CECEORERl.. 1982). Once again, the
smaller the surface patch, the greater is the
accuracy. But a-smaller surface patch
implies that the order of the matrix is large.
There is also a limit to which the size of the
surface patches may be increased without
sacrificing the accuracy . It has been
reported that when the pulse functions are
used, failure to allow for variation of the
field within each cell limits the maximum
usable electrical size of the cells.
Appreciable error is expected for \k\l > 2,

In one- or two-dimensions, and |E]/>
6, in the three-dimensional problems,
where / is the side of the cell and k is the
propagation constant in the material

(Hagmann [ElCAcICOnERE., 1982).




The MoM is well known to predict
reasonably accurate solutions for the class
of problems they treat. The applicability of
MoM to RAM analysis has therefore been
explored extensively (Tremain & Mei,
1978; Medgyesi-Mitschang & Eftimiu,
1979; Sultan & Mittra, 1985). Rogers
(1986) applied MoM to RCS prediction of
arbitrarily shaped conducting bodies coated
with RAM. MoM can also be modified to
effectively analyze the shapes used in the
construction of anechoic chambers. Yang
VECECNEOREIRY. (1992) have developed a
periodic moment method (PMM) for the
analysis  of  two-dimensional  lossy
dielectric scatterers. A CRAY-YMP was
employed to determine the reflection and
transmission coefficients of periodically
distributed wedges illuminated by a plane
wave. The grid-like segmentation of MoM
is also employed in the spatial network
method by Kashiwa [EIICACHICONCISE.
(1990). The scattering body, an aircraft, is
divided into a number of cells of X/30 size.
In this method, the equivalent circuit of the
coated scatterer is constructed in terms of
bulk impedances to compute the field
patterns.

It is apparent from the literature that MoM
IS most suitable when the scatterer is
electrically small in size. MoM is often
thought of as a low-frequency technique
because it cannot be applied to bodies that
are arbitrarily large in terms of the
wavelengths. A body that is large in terms
of wavelengths will result in a large matrix.
Such a matrix is not only difficult to invert,
but also tends to become unstable (Mittra




& Klein, 1975). Thus the review of MoM
has clear pointers as far as its application to
RAM-coated structures is concerned. The
MoM technique can be used satisfactorily
only when the dimensions of the structure
are of the order of the wavelength, i.e., the
radar frequency is low (Medgyesi-
Mitschang, 1982). Quite often, the practical
scatterers in the Gigahertz range tend to be
much larger than one wavelength; for such
problems, MoM is not a viable method
even with the state-of- the-art computers.

3.3.2 Finite Difference Time Domain
Method

An alternate to the Method of Moments
within the domain of grid-based methods is
the Finite Difference Time Domain
(FDTD) method (Yee, 1966). In this
method, the scatterer over which EM fields
arc induced is embedded in a space lattice
over

which the finite difference is taken. The
starting equations are the Maxwell curl
equations in differential form. These
equations are then adapted in the finite
difference format and rearranged to yield
recurrence relations. The finite difference
scheme implemented in FDTD is
essentially based on one-dimensional
Taylor series expansion. Given suitable
boundary conditions, the scheme converges
to steady state values for the electric and
magnetic fields.

Prior to outlining the FDTD method, we
give the Taylor series expansion which is




utilized in finite difference schemes. In the
complex (.\\y) plane, an analytic function
/(a\v) can be expressed by its Taylor series
expansion around a given point (a,b)

In the simpler one-dimensional case, the
Taylor series reduces to

Substituting «+Av forx in the equation
above, we obtain

We denote a function at an arbitrary grid
point (u,v,w,n) in the four-dimensional
orthogonal space-time (.vvy,z,/) coordinate
frame as

where u, v, w, and n are assumed to be
integers. It follows that: /"+».»e» =/ [(" +
Iw)AXx,VAyY, WATr.nA/]

Applying the Taylor series expansion
(3.50) in the immediate neighborhood of
the space lattice grid point (u,v,w) at the
instant n, one obtains

Thus as a first-order approximation of eq.
(3.55), we get

Similarly by adding egs. (3.53) and (3.54)
it can be shown that

The derivatives with respect toy and z are
identical in form to those in egs. (3.56) and
(3.57). The partial derivatives with respect
to time t can be obtained in likewise
manner. We recall that in the space-time
coordinate frame, the analyses along the




length and time axes are identical. Thus the
first derivative of the function /with respect
to the time parameter t can be derived as

Equations (3.56) through (3.58) are made
use of in the FDTD formulation to convert
the partial differential equations into the
finite difference equations.

We now recall the Maxwell-Ampere law

The constitutive relations (2.41) and (2.43)
for a linear isotropic medium are
substituted in the equation above, to get
(3.60)

The curl equation (3.60) can be
conveniently denoted by its determinant
definition

Equating the two sides of (3.61) along the
directed components, we obtain

Substituting eq. (3.58) and the partial
derivatives with respect to y and z (c.f eq.
(3.56)) in eq. (3.62), we obtain a finite
difference form as

The value of Ex at time n is assumed to be
the average of those at the (n-J*) and (n +
/2) instants.

Substituting eq. (3.66) in eq. (3.65), and by

rearranging the terms, we get

We therefore obtain the electric field at the
time instant (/» + /) as a recursive relation.




From egs. (3.63) and (3.64), one can obtain
the £, and £. components as:

From the Faraday induction law, recursive
relations can be similarly derived for the
magnetic field components //,, //,, and H:.
The electric and magnetic field values thus
obtained are used as the starting point for
the next instant. The recursion process is
continued till one obtains the steady state.

The FDTD formulation permits spatial
variation of the intrinsic parameters of the
media. Such inhomogeneities are handled
by setting up a lookup table of the
permittivity and permeability values at
each spatial point of interest.

Spatial segment resolution increases the
accuracy of the results predicted by the
FDTD method. Typically with 0.1 ?. length
segmentation, one could achieve +0.6 dB
accuracy, whereas 0.05 X would result in
an error margin within £0.2 dB (Taflove &
Umashankar, 1989).

The stability of the FDTD numerical
solution is guaranteed by taking the time
interval At as (Taflove & Brodwin, 1975):
At<—c

Electric and magnetic field determinations
in the FDTD formulation are interspaced in
the volume. To illustrate, in a given plane
of the grid frame, if the electric fields are




determined at the grid intersections
(nodes), the magnetic fields are determined
at the mid points of the grid between two
nodes. Similarly, the EM field vectors E
and H are also interleaved along the time
axis with At/2 time step.

Spatial analysis can be implemented
independently for different planes or even
different nodes. This makes the FDTD
algorithm amenable to parallelization
(Brand & Vanewijk, 1994). Such a scheme
can be implemented even on parallel
computers with a low number of
processors. On the other hand, FDTD can
be parallelized to the extreme, with a grid
intersection node per processor. Taflove
and Umashankar (1989) have shown that if
there were a Connection Machine with
1,500,000 processors (1.5M machine), the
effective performance could be scaled up to
100 GFlops as compared to the 10 GFlops
of Cray 3.

The FDTD formulation often employs the
rectangular coordinate system. Hence
surfaces with planar shapes have been more
amenable to analysis through this
approach. Among the simplest of the
canonical shapes to be handled has been
the square metallic cylinder (Umashankar
& Taflove, 1982), which was validated
against the results obtained by MoM. A
cube of similar dimension, i.e.. ps - 2, was
analyzed for broadside RCS (Taflove &
Umashanker, 1983) which once again
matched, within 0.2 dB in magnitude and
1° in phase, the results predicted by MoM.
Yet another canonical surface, namely the




plate, was analyzed and compared with
measurements (Taflove JENCICHCONSISY.
1985) where the theoretical predictions
showed agreement within |1 dB and 1° look
angle. FDTD under the rectangular
formulation has been applied and has
predicted excellent results in the case of
complex aircraft structures (Taflove, 1995).

It would appear that the FDTD formulation
in the rectangular coordinate system is not
very' efficient for analyzing curved
surfaces (Taflove & Umashankar, 1989) for
which use of the locally distorted grid
(Madsen &  Ziolkosvski, 1988), the
globally distorted unstructured and body
fitted grids (Fusco, 1990) have been
explored. The metallic circular cylinder ([ia
5) thus handled, resulted in an accuracy of
1.5%. It is interesting to note that among
the first structures to be analyzed by FDTD
was a dielectric cylinder (Taflove &
Brodwin, 1975). However the accuracy
was within 10% which was an order of
magnitude worse than that of other
contemporary methods.

An alternative approach to the bodies of
revolution has been by reformulating
FDTD in the appropriate coordinate system
(Jurgens & Saewert, 1995). For example,
one would analyze the circular cylinder in
the circular-cylindrical coordinate system
since the right circular cylinder is a
coordinate surface of this particular
coordinate system (Moon & Spencer,
1971). The FDTD method has been used in
conjunction with the Levenberg-Marquardt




nonlinear optimization routine for forward
scattering computations of broadband
absorbers (Strickel & Taflove 1990). It is
also suggested that the use of Connection
Machine would enable cost- effective
RAM design with efficient higher
dimensional searches.

Karlier work by Holland and Cho (1986)
on the lines of FDTD employing coarse
grids reported reasonable accuracy (within
10%) for RAM coated cylinders. This was
essentially a two-dimensional analysis
involving no more than 3,125 cells. Yet
another variant of time domain analysis
conforming to Bergeron's method in
threedimensional space and time was
successfully employed to analyze the

resonant RAM (Aoto [EICACHCONSIEY-

1987).

The characteristics of the time domain
pulse waveform as a function of the
incidence angle were presented along with
the variations of field distribution for the
changes in magnetic loss.

How' docs the FDTD method compare with
the MoM discussed above? It has been
shown that MoM could be attractive for
certain low-frequency problems. But as the
operational frequency and thereby the
electrical size of the scatterer is scaled up,
MoM becomes computationally , whereas
FDTD might still be able to solve the
problem. The example cited by Taflove and
Umashankar (1989) in this context is that
of the monostatic RCS of a 30x10x0.65
cm3 flat conducting plate. At 1 GHz, MoM
requires a total of 172 triangular patches;
inverting a matrix of the order (258x258) is




computationally feasible. The FDTD
method on the other hand, would require
the determination of 221,184 unknown
field components. However, when the
frequency is scaled to 9 GHz. a
(4890x4890) order matrix must be
inverted, thus eliminating MoM as the
method of analysis with present day
computers. FDTD still remains a feasible
method with the overall cell size of
112x48x18 corresponding to 580,608
unknowns.

It has been suggested that scatterers of the
order of 50 X can be handled in the near
future with faster concurrent and vector
supercomputers than available today.
However, at the ty pical X-band frequency
of 10 GHz, 50 X represents 1.5 meters. It
must be obvioui to a discerning reader that
neither MoM nor FDTD can presently treat
problems of a practical nature for aerospace
applications when the scatterer s
electrically large. For such electrically
large scatterers one uses an entirely
different approach based on high-frequency
methods. The ray-theoretic foundation of
these methods is described below.

3.4 HIGH FREQUENCY METHODS

Electromagnetic analysis of surfaces is
done with respect to the electrical
wavelength. One would therefore expect
identical behavior for a scatterer of 30
meters at 100 MHz and another one of
similar shape scaled down to 1 meter at 3
GHz. The reason for this is that both the




scatterers in terms of electrical size are of
10 X.

It is clear from the discussion of MoM and
FDTD that these grid-based methods are
constrained by the size of the scatterer. The
time taken for volumetric grid analysis
increases by a factor of nb where n is the
increase in the linear dimension of a cube.
With the ever increasing use of higher
frequencies, the object keeps increasing in
electrical wavelength. An aircraft or missile
of 10 meters linear dimension corresponds
to 1 X, 10 X, and 300 X at 30 MHz, 300
MHz and 9 GHz respectively. All these
frequencies are actively used in aerospace
applications. However MoM can vyield
satisfactory results only at 30 MHz. At 10
X only coarse results can be obtained by
increasing the grid size, whereas at 300 X,
MoM is not a feasible method since it
would become computationally intractable.
Scatterer much larger than I X in linear
dimension arc said to in the high-frequency
domain.  For  such  high-frequency
scatterers, one applies geometrical optics
based techniques where the larger the size
of the scatterer the more accurate the
predicted results.

3.4.1 Geometrical Optics

If the frequency associated with the wave
propagation can be considered infinitely
large in the limit, as compared to the
scatterer, the corresponding wavelengths
approach zero. For such scatterers any
discernible field variation on the surface




occurs only over large distances. Hence the
field behavior is said to be local, in the
sense that it depends only on the point of
interaction with the HM wave and its
immediate  neighborhood. For  such
electrically large scatterers, the wavefront
can always be approximated as a plane
wave (Jones, 1964),

where S(r) is called the eikonal of the
wave. We recall the wave equation (2.76)
for the simple media

which in the phasor form is expressed by
V2E +;/fwlE =0 (3.74)

Substituting eqgs. (2.44) and (2.45) in the
equation above, we get

V*E + firer/1:E = 0(3.75)

since

p=(Oyje0fi0 (3.76)

Equation (3.72) is substituted in eq. (3.75)
above, and upon rearrangement of terms
we obtain

Htet - (VS)2] = -j-(EOV2S + 2V£0 « Vi) - +
V2EOQ (3.77)

If the wavelength X—>0. as is the case in
the geometrical optics (GO) region, the
phase constant /?-»», sincc

The right hand side of eq. (3.77) vanishes
In such cases, and we obtain the nontrivial
solution

(VS)2 ~H,C,(3.79)




This is known as the eikonal equation.

The concept of eikonal S can be extended
to relate the electTic field when transported
from one point to another. Consider two
eikonals S, and S2, which is equivalent to
considering a ray bundle (or ray tube) at
two different points in space (Fig. 3.10).
We denote the incremental area at the two
eikonals as dasl and dasi-

Figure 3.10 Wavefronts at cikonals S| and
S2.

The two radii of curvature along the
orthogonal principal directions for the
wavefront at the eikonal S, are denoted as
and p2 Assuming that the normal distance
between S, and S; is given by s, it is
possible to relate the incremental area </osl
and das, on the two eikonals.

(3.80)

For a homogeneous medium, the electric
field at S, due to that at S, can be obtained
by the energy conservation principle.

(381)

An implicit assumption has been made in
eqg. (3.81) to incorporate the polarization
and phase of the plane wavefront (Pathak,
1992).

If a point source of radiation S is in the
vicinity of an electrically large scatterer, it
divides the space surrounding the scatterer
in the illuminated and shadow regions (IR




and SR). The regions IR and SR meet at
the shadow boundary . SB (Fig. 3.11). Let
an observation point, distinct from S, be
denoted by Pt in IR. Similarly let an
arbitrary point in the shadow region be
denoted by Ps. A direct ray can be
invariably drawn from S to P,. Reflected
ray(s) can also be shown to exist between S
and P|. In contrast, for the point Ps in the
shadow region, only refracted ray(s) can
exist between S and Ps. In many practical
applications, however, for example when
the scattering is metallic, refracted rays do
not exist. These concepts of IR, SR and

Figure 3.11 A point source in the vicinity
of an electrically large scatterer divides the
neighborhood into the illuminated and
shadow regions denoted by IR and SR.
respectively.SB, and direct, reflected and
refracted rays can be extended to the case
of a plane wavefront incident on a scatterer
(Fig. 3.12).

It is well known that EM waves traverse in
a straight line in free space or in any other
linear homogeneous medium. The laws of
reflection and refraction have been
discussed in Section 3.1.2. The point of
incidence on the surface is known as the
specular point in the context of reflection.
The specular point exists even for normal
incidence. In order to determine the exact
path of propagation for these direct,
reflected, and refracted rays, one can
follow a more general principle of optics
called Fermat's principle of least action (or
least time). This principle requires that ray




paths corresponding to EM propagation be
stationary. That the ray path in free space
should be the “shortest path”, and hence a
straight line, is a consequence of Fermat’s
principle. The angles of incidence and
reflection being equal, the restriction
regarding coplanarity' of the reflected ray
with respect to the plane of incidence also
follows from this principle. In the case of
refraction, Snell’s law can be readily
derived from Fermat’s principle.

There could of course be multiple
reflections (and. or refractions) when a ray
propagates from a source to an observation
point. For example, the ray path undergoes
more than one reflection when it is incident
on a dihedral comer. The geometric
description of the direction of a ray, which
undergoes m successive reflections, can be
elegantly expressed in the dyadic form
(Comblect, 1976),
SI[1-2NmMNm][I-22Nm.1Nm.1],,.[l-
2NINT1]s(, ,,»=1,2,3,... (3.82) fc

where I is the identity' matrix, N,,, is the
unit outward surface normal vector
corresponding to the /w-th reflection, and s
is the unit vector in the ray direction.
Similarly the refraction can be written as a
dyad:

Observe that in order to generalize this
dyadic form to multiple refractions, N in
eqg. (3.84) must be replaced by Nm
corresponding to the »i-th refraction.
Similarly, the direction of s, in the
denominator also varies and may be
denoted as s,m. It is apparent that s,m is
s,m|. Hence this relation is essentially
recursive in nature.




If the scatterer is conducting in nature, GO
predicts an accurate field in the deep of the
illuminated region. This is the sum of the
fields associated with the incident ray and
the reflected ray(s). Equation (3.81) may be
rewritten for the incident and reflected
electric fields as

We note that S and P, in egs. (3.85) and
(3.86) are equivalent to S, and Sj in eq.
(3.81). The subscripts i and r denote
incident (or direct) and reflected ray fields.
Further, the sub-subscripts have been
dropped for reasons of convenience.
Equation (3.86) relates the incident and
reflected field at the point of specular
reflection through a reflection dyad R as
outlined by Pathak (1992).

Moreland and Peters (1966) applied GO to
obtain an expression for RCS analyses of
spherical and cylindrical coated dielcctric
shells. Further, by comparing specular and
creeping  wave  contributions  they
concluded that the latter gave rise to errors
in the case of comparatively smaller bodies
while its effects are negligible for larger
bodies. Earlier solution of a similar
problem had been attempted using semi-
empirical methods for RCS computations
of the spherical and cylindrical scatterers
(Swamer & Peters, 1963). The scattered
field was approximated as the phasor sum
of the field scattered by the air-dielectric
interface and that by the equivalent
conducting body, which differs from the
actual body because of the lens action of
the shell.




Alexopoulos (1969) applied GO to obtain
the reflected electric field for large spheres
(fai-50 to 1000; a is the radius of the
sphere) coated with inhomogeneous
dielectrics. A series solution has also been
obtained for the backscattcring GO
computations for bodies of revolution
coated with homogeneous RAM to study
the effect of curvature on RCS reduction
(Arsaev, 1982).

Since GO is based on the assumption that
the scatterer is electrically large, it cannot
be applied in the low-frequency domain
where the scatterers are smaller than the
operational wavelength. For the same
reason, the scattering results predicted in
the resonance region (X~I) are not
accurate. Furthermore, GO is known to
break down at the shadow boundaries and
in the vicinity of the sharp edges (Stratton,
1941). Geometrical optics predicts a zero
field in the shadow region of a conducting
scatterer. This is yet another flaw of GO
since in practice there is always a finite
field, however small, in the shadow region.
These drawbacks of GO are overcome by
the introduction of a class of high-
frequency asymptotic theories which
essentially introduce corrections in the
form of diffraction coefficients. The
geometrical theory of diffraction (GTD) is
one such example which has been
extremely popular and also extensively
modified to suit the wvarious modeling
requirements. Consequently asymptotic
theories have found their way into the
analysis of RAM as well.




3.4.2 Geometrical Theory of Diffraction
The geometrical theory' of diffraction
(GTD) is a modification of the GO
formulation, which is well-known and easy
to apply. GTD in fact incorporates the
phenomenon of diffraction into GO by
systematically introducing a set of
diffracted rays to which the diffracted
fields are associated. Diffraction occurs
when a ray strikes any surface of
discontinuity, such as an edge (edge-
diffraction) or a vertex

Figure 3.13 Various lvpcs of diffraction
mcchanism (a) | ip dilTraction. (b) Edge
diffraction, and (c) Surfacc diffraction (itip-
diffraction), or when it grazes a curved
surface (surface-diffraction). The surface-
diffraction phenomenon is represented by a
ray path, whereas edge- diffraction results
in Keller’s cone (Bach, 1977), and tip-
diffraction leads to volumetric scattering of
the rays (Fig. 3.13).

Ray tracing between the source and the
observation  points  constitutes  the
determination of all surfacc-rays, cdge-
diffractcd rays, and tip-diffracted rays. In
general, the edge-diffracted field is larger
than the tip-diffracted field but smaller than
the surfacc-diffracted field (Bach, 1977).
The surface-, edge-, and tip- diffracted rays
traverse in accordance with the generalized
Fermat principle (Pathak JENCACHCORNEISY.
1981) which require the rays to be
geodesics on the surface or straight lines in
free space. The GTD field is therefore
given as:

Although, Keller’s GTD formulation
(Keller. 1962) succeeded in overcoming the




shortcomings of GO, it predicted infinite
fields in the transition region (TR), in the
immediate vicinity of the SB, and along
caustic directions (Mittra, 1977). Much
attention was devoted to developing
uniform representations (Ahluwalia [EHGaE
BOREISN.. 1968; Kouyoumjian & Pathak,
1974n for the diffracted fields in angular
regions. In the uniform asymptotic theory’
(UAT), the infinities at the TR are
annihilated by introducing an additive
correction term which has an identical
singularity at the TR (Ahluwalia [EHGa8
BOREISN., 1968). In contrast Kouyoumjian
and Pathak (1974) proposed the uniform
theory of diffraction (UTD) where the
cancellation of infinity is accomplished by
a multiplicative factor that goes to zero,
precisely at those observation angles where
the Keller diffraction coefficients become
infinite.  All  variants of GTD are
generically referred to as GTD; among
them. UTD is perhaps the most popular.

UTD assumes that the tangential electric
field in the aperture is known, so that an
equivalent infinitesimal source can be
defined at each point in the aperture.
Surface rays emanate from this source
which is a caustic of the ray system. A
launching coefficient is introduced to
describe the excitation of the surface ray
modes.

In the IR. the incident radiation from the
source is treated by GO. In contrast, for a
point Ps in the shadow region SR (Fig.
3.14), the UTD field due the source
radiator

N(ps) = E,(s,) [D,bSbS2 + ~nslis2] 1—
(3.88)




where n and b represent the unit principal
normal and unit binormal vectors for the
geodesic at a given point. The application
of the cikonal equation results in a
similarity of form between egs. (3.81) and
(3.88). D, and D/, are the soft and hard
diffraction coefficients as defined by
Pathak (1992).

If the scattering takes place from a straight
edge, the field in the shadow region has the
form

F.  ~(Ps)-E,(S,) B(3.89)

The edge diffraction coefficient depends on
the planes of incidence and diffraction with
respect to the incident and edge-diffracted
ray directions (Kouyoumjian & Pathak,
1974).

The volumetric scattering due to the tip-
diffraction is expressed as

where D, is a function of the wave number
BESIBRY the incident and tip-diffracted ray

directions (Sikta JEICACICONGISN., 1933).

UTD has been successfully employed for
scattering analysis of simple canonical
shapes. The most extensively studied
among these is the conducting right
circular cylinder for which the predictions
matched well (Pathak & Kouyoumjian,
1974) with the exact solution results for
radii as small as 0.5 X. The ray analysis for
the elliptic cylinder has been treated by

| Pathak JIGHENSORBINN. (1981) where once




again the result matches well with the exact
solution (Wait & Mientka, 1959). The
radiating source in this case however, is
located conveniently at the extremity of the
cross-sectional profile. The ray analysis
which is the main bottleneck in the
application UTD, can

Figure 3.14 | he fields in the shadow region
of an electrically large smooth convex
surface is due to surface diffraction be
treated for open cylinders such as the
general parabolic cylinder (Jha &
Mahapatra, 1992) and the hyperbolic

cylinders (Jha ENCACICONEIRE., 1993) in the

closed form.






