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Chapter 3 Physics and Overview of
Electromagnetic Scattering

J. F. Shaeffer GiGoKeH

3.1 INTRODUCTION

The objective of this chapter is to
introduce the concept of radar cross
section and the fundamentals of
electromagnetic  scattering in  an
overview fashion so that the reader may
then delve into the remainder of the
book. The topics to be presented are

. Terms: The definition of radar
cross section from IEEE, an intuitive
derivation, the polarization scattering
matrix for linear polarization and its
conversion to circular polarization, and
the definition of total cross section and
extinction cross section and the forward
scattering theorem;

. Fundamental physical processes
of electromagnetic scattering:
Electromagnetic wave fundamentals,
induced charges and currents, field lines
attached to charges, near, intermediate
and far fields, solenoidal and
conservative fields, and the concepts for
scattered, incident, and total field;

. Scattering regimes: The low-
frequency Rayleigh  region  with
induced-dipolelike ~ scattering,  the

resonant region with attached surface

Chuong 3 Pic Tinh Vat Ly va Tong
Quan Vé Tan Xa Dién Tur

JF Shaeffer
3.1 GIOI THIEU

Muc tiéu ciia chwong nay nham gidi
thiéu khai niém vé tiét dién radar va cac
nguyén tic co ban cua qua trinh tan xa
dién tr & dang tong quan dé sau ndy
nguoi doc ¢ thé di siu vao phan con lai
ciia sach. Ching toi s& dé cap dén cac
chu dé

« Cac thuat ngir: Pinh nghia tiét dién
radar cia IEEE, m{t cach hinh dung
tryc quan, ma tran tan xa phan cuc cua
ché do phan cuc tuyén tinh va chuyén
d6i sang dang phan cuc tron ctia nod, va
dinh nghia tiét dién toan phan va tiét
dién suy hao va dinh Iy tdn xa thuan
(tan xa vé phia trude);

» Cac qua trinh vat ly co ban cua hién
tugng tan xa dién tir: nguyén tic co ban
vé song dién tur, di€n tich va dong dién
cam ung, cac duong suc cua di¢n tich,
cac trudng gan, trung binh va xa, Cé&c
truong SOIENGIt va truong bao toan, va
cac khai niém vé truong tan xa, trudng
tG1, va trudng toan phan;

« Cac ché do tan xa: Vung Rayleigh tan
s6 thap cung véi tan xa kiéu ludng cuc
cam ung, vung cong huong kém theo




wave scattering; and the high-frequency
optics region with the concepts of
individual scattering centers; opticslike
specular, end-region, and diffraction
scattering mechanisms; phasor addition
as how various scattering mechanisms
sum to form a total scattered field; and
the concepts for coherent and incoherent
sums of individual scattering centers;

. Electromagnetic theory: Field
quantities and their sources; Maxwell’s
equations in differential and integral
form; vector and scalar potentials as
sources for solenoidal and conservative
field components; wave equation and
char-acteristic  solutions; waves at
boundaries; reflection, transmission, and
absorption coefficients; Fresnel
reflection  coefficients; EM  wave
formalism compared to transmission
line theory; surface current point of
view; and the Stratton-Chu integral
equation formulation of Maxwell’s
equations with currents and charges as
field sources.

3.2 RADAR
DEFINITION

CROSS  SECTION

Radar cross section is a measure of
power scattered in a given direction
when a target is illuminated by an
incident wave. RCS is normalized to the
power density of the incident wave at
the target so that it does not depend on
the distance of the target from the
illumination source. This removes the

tan xa song bé mit va ving quang hoc
tan s cao cung v6i khai niém vé cac
tAm tan xa riéng biét; cac co ché tan xa
guong kiéu quang hoc, end-region , va
nhiéu xa; cong phasor nham muyc dich
téng hop cac co ché tan xa khac nhau va
xdy dung truong tin xa toan phan, va
cac khai niém tong két hop va khong két
hop ctia c4c tam tan xa riéng biét;

« Ly thuyét dién tir: Cac dai luong
truong va ngudn goc cua ching, céc
phuong trinh Maxwell & dang vi phan
va tich phan; thé vector va vd hudng voi
tu cach voi tu cach 13 cac ngudn cia
thanh phan truong SO6léndit vatrudng
bao toan; phuong trinh song va cac
nghi¢m dac trung; song tai cac bién, hé
sb phan xa, truyén qua va hép thy, hé sb
phan xa Fresnel; Hinh thirc luan song
EM so voi 1y thuyét dudng truyén, quan
diém dong dién bé mit, va dang phuong
trinh tich phan Stratton-Chu cta cac
phuong trinh Maxwell véi cac dong va
cac dién tich déng vai trd 13 ngudn cia
truong.




effects of the transmitter power level
and distance to target when the
illuminating wave decreases in intensity
due to inverse square spherical
spreading. RCS is also normalized so
that inverse square fall-off of scattered
intensity due to spherical spreading is
not a factor so that we do not need to
know the position of the receiver. RCS
has been defined to characterize the
target characteristics and not the effects
of  transmitter  power, receiver
sensitivity, and the position of the
transmitter or receiver distance. Another
term for RCS is echo area.

3.2.1 IEEE RCS Definition

The IEEE dictionary of electrical and
electronics terms [1] defines RCS as a
measure of reflective strength of a target
defined as 4TT times the ratio of the
power per unit solid angle scattered in a
specified direction to the power per unit
area in a plane wave incident on the
scatterer from a specified direction.
More precisely, it is the limit of that
ratio as the distance from the scatterer to
the point where the scattered power is
measured approaches infinity:

where Escat is the scattered electric field
and Einc is the field incident at the
target. Three cases are distinguished:




monostatic or backscatter, forward
scattering, and bistatic scattering.

3.2.2 Intuitive Derivation for Scattering
Cross Section

A formal cross section may be defined
for the energy that is scattered,
absorbed, removed from the incident
wave, and the total cross section. The
scattered energy is of greatest practical
interest because it represents the energy
available for detection.

The formal IEEE definition for RCS can
be made more intuitive from the
following derivation, Figure 3.1. Let the
incident power density at scattering
target from a distant radar be P, W/m2
(which automatically removes from the
definition transmitter power and inverse
square intensity fall-off). The amount of
power intercepted by the target is then
related to its cross section cr, with units
of area, so that the intercepted power is
(crP,) W. This intercepted power is then
either reradiated as the scattered power
or absorbed as heat. Assume for now
that it is reradiated as scattered power
uniformly in all 4tt sr of space so that

the scattered power density,
watts/meter2, is given by
(3.2)

We then solve (3.2) for cr and consider




that the distance R is far from the target
to avoid nearfield effects:

RCS is therefore fundamentally a ratio
of scattered power density to incident
power density. The power or intensity of
an EM wave is proportional to the
square of the electric or magnetic field,
so RCS can be expressed as

Figure 3.1. Intuitive definition for radar
Cross section.
(3.4)

because in the far field either E or H is
sufficient to describe the EM wave.

The unit for cross section <r is area,
usually in square meters, or may be

nondimensional by dividing by
wavelength squared, dA2.
This  definition is made more

recognizable by examination of the
basic radar range equation for power
received by the radar, Pr, in terms of
transmitted, scattered, and received
power:

(3.5)

The first term in the numerator is the
power density at the target from the
transmitter. This term has units of watts
per meter2. This incident power flux is
multiplied by the cross section (area)
and represents the power reflected back
toward the receiver. When this is
divided by the return path spherical
spreading, we obtain the power density




at the receiver for capture by the
receiving antenna effective area Ar.

Radar cross section is a function of

. Position of transmitter relative to
target;

. Position of receiver relative to
target;

. Target geometry and material
composition;

. Angular orientation of target
relative to transmitter and receiver;

. Frequency or wavelength;

. Transmitter polarization;

. Receiver polarization.

The general notation for indicating

polarization and angle functionality is
(3.6)

where t and r refer to transmitter and
receiver polarization, typically
horizontal or vertical, and angular
coordinates.

Bistatic cross section is for the case
when the transmitter and receiver are at
different locations, Figure 3.2, so that
(3.6) applies; that is, angular location of
target relative to transmitter and receiver
must be specified.

Forward cross section is the measure of




scattered power in the forward direction;
that is, in the same direction as the
incident field. This forward scattered
power is usually 180° out of phase with
the incident field so that when added to
the incident field a shadow region is
formed behind the scattering object.

Monostatic or backscatter cross section
is the usual case of interest for most
radar systems where the receiver and
transmitter are collocated, oftentimes
using the same antenna for transmitting
and receiving, Figure 3.2. In this case
only one set of angular coordinates is
needed. Most experimental
measurements are of backscatter cross
section. Analytical RCS predictions,
however, are much easier to do for
bistatic cross section, with the
illumination source fixed and the
receiver position moved. One must be
careful about analytical RCS predictions
as to just which quantity is being
presented.

Radar cross section of a target may also
be a function of the pulse width T of the
incident radiation. When T is large
enough, T > 2 Lie, where L is the body
size and c the speed of light, the entire
target is illuminated at once. This is the
usual case for microsecond pulsewidths
that have a spatial extent of 1000 ft or
more. This is loosely equivalent to the
target being illuminated by a continuous
wave at a specific frequency, CW
illumination. This is known as long-
pulse illumination and is the usual




measurement case. When very short
transmitter pulses are used, such as
nanosecond pulses with a spatial extent
of only several feet, T < 2 Llie, then each
scatterer on the target contributes
independently to the return. In this case
the RCS is a collection of individual
scattering returns separated in time.
Short-pulse radars (or their wide
bandwidth equivalent) are often used to
identify these scattering centers on
complex targets.

RCS Customary Notation

The units for radar cross section are
square meters. This does not necessarily
relate to the physical size of a target.
Although it is generally true that larger
physical targets have larger cross
sections (e.g., the optical front face
reflection for a sphere is proportional to
its projected area, <xsphere = tta2), not
all RCS scattering mechanisms are
related to size as is shown in the
hierarchy of scattering table. Typical
values of RCS can span 10-5 m2 for
insects to 10+6 m2 for large ships. Due
to the large dynamic range of RCS, a
logarithmic power scale is most often
used with the reference value of aref - 1
m2:

(3.7)




Two notations are used. The dBsm
notation is customary within the
academic, government, and industrial
communities. The dBm2 notation is less
used, typically in radar system design
literature. A comparison of the square
meter and dBsm scales is shown in
Figure 3.3. It is noted that 1 m2
corresponds to 0 dBsm with fractional
values having negative dBsm values; for
example, 0.01 m2 = — 20 dBsm.

3.2.3 Other Cross-Section Concepts
The cross-section concept defined above
is for the power density scattered by a
target in a given direction. As such it is
our working definition because it
represents or defines the power that may
eventually be radiated back to a radar
receiving antenna for possible detection.
Often this cross section is referred to as
the differential scattering cross section,
as it gives the angular distribution of
scattered power.

Several other scattering definitions may
also be given. They are for power that is
absorbed by a target, for the total power
removed from the incident field, for the
total power scattered by a target, and the
forward  scatter  theorem.  These
additional concepts not often used in
practice.




Absorption Cross Section

A scattering target may also absorb
some of the incident EM wave power in
addition to scattering. The absorption
cross section is a measure of the
absorbed incident power. Perfectly
conducting targets do not absorb power
as the resistivity is identically zero.
They can only scatter. However,
nonperfect conductor targets, such as
those with absorbing materials, can turn
some of the incident energy into heat.
This energy of course is then not
available for reradiation. The absorption
cross section is defined as the amount of
power absorbed by the target, in watts,
normalized to the incident power
density, in watts/meter2:

which depends on only transmitter
location angular coordinates. The
amount of power absorbed by a target
may be specified in terms of currents
and resistivities of the target and may be
computed from analytical models, but
otherwise it is difficult to determine.

Extinction Cross Section

Power scattered and/or absorbed by a
target is removed from the incident EM
wave. Total power removed by virtue of
scattering and absorption, in watts,
normalized to the incident power
density, in watts/meter2, is defined as
the extinction cross section:

_ power removed by scattering and
absorption (W) e incident power




density (W/m2)
=or+a-a

(39)

The extinction cross section is equal to
the sum of the total scattering cross
section, defined below, and the
absorption cross section.

Total Cross Section

The total scattering cross section or is a
measure of the total power scattered by
atarget inall 4TT sr spatial directions:

total scattered power (W),
aT =-—TZ 3m2 (3.10)

incident power density (W/m)

It is formally defined by integrating the
scattering (differential) cross section <7
over all spatial directions:

<tt = T~ [crdfl = f f (t(Os, <f>s) sin 6 d6
dp (3.11)

4tr } 4ttjo jo

This is also the 4-rt steradian spatial
average cross section. If 0(6, <f>) were
constant over all spatial directions (a
physical impossibility), then crr = a. The
total cross section has the physical
interpretation of an area normal to the
incident EM wave that intercepts an
amount of incident power equal to the
scattered power.




The wusual scattering cross section
(differential) then may also be defined
in terms of the total cross section <Tt:
‘r=4aM <3-12)

where we see why the term differential
is applied; that is, it gives the amount of
scattered power as a function of spatial
coordinates.

Forward-Scattering Theorem

The electric field scattered in the
forward direction, when added to the
incident field forms a shadow behind
the target. (The forward-scattered field
Is 180° out of phase with the incident
field, so addition actually means
subtraction.) The darkness of this
shadow is a measure of how much
power was removed from the incident
EM wave; that is, the greater the
scattering the greater is the forward
scatter and the darker is the shadow. The
forward-scatter theorem relates the total
cross section, which is the power
removed from the incident wave by
scattering, to the forward-scattered field.
The explicit form is proportional to the
imaginary part of the scattering
amplitude F evaluated in the forward
direction, written as [2,3]

(3.13)

where we have wused the standard
expression for the differential cross
section defined in terms of the scattering
amplitude function F(0, (p):

of6, <f>) = 4>)I2




Therefore the total power removed from
the incident wave is related to the field
scattered in the forward direction.

Each of these concepts for EM
scattering has equivalent analogs for
acoustic and particle physics scattering.

3.2.4 Polarization Scattering Matrix

Radar cross section, as a scalar number,
Is a function of the polarization of the
incident and received wave. A more
complete description of the interaction
of the incident wave and the target is
given by the polarization scattering
matrix (PSM) , which relates the
scattered electric field vector E5 to the
incident field vector E', component by
component. In matrix notation, this is

As E can be decomposed into two
independent directions or polarizations,
because there is no component in the
direction of propagation k, the
polarization scattering matrix 5 is a 2 x
2 complex matrix:

where EJ and E' are the scattered and
incident fields, each with independent
vector components Ei and E2. The
components of 5 are related to the
square root of cross section

(3.17)

where we recognize VVo- as a complex




number that has amplitude as well as
phase. The radar received voltage, Vr,
depends on the polarization of the
receiver, nr, by

and on the polarization
transmitted wave by

of the

where a and f3 are the transmitted
components of each polarization along
the directions of E\ and E2, respectively.

The scattering matrix is specified by
eight scalar quantities, four amplitudes,
and four phases. One phase angle is
arbitrary and used as a reference for the
other three. If the radar system is
monostatic (backscatter), then S12 =
S21 and S can then be specified by five
quantities. If we had a coherent radar
that transmitted and received two
orthogonal polarizations, then the
scattering matrix could be determined
for a given aspect (0, <p) at frequencyy/.
For a given target, aspect angle and
frequency, we can extract no more
signal information than that contained in
the scattering matrix. The PSM
approach to scattering is discussed by
Huynen [4] who considers the
eigenvalues and eigenvectors of the
scattering matrix functions of target
size, orientation, symmetry, double
bounce polarization, and characteristic
angle. Such information can be useful
for target identification.

The PSM matrix can be defined for
linear or circular polarization. Typical
linear  polarization directions are




horizontal and vertical for experimental
work and $ and <p spherical directions
for analytical work.

Scattering  Matrix  for  Circular
Polarization

In circular polarization, the electric field
vector rotates in the plane perpendicular
to propagation. The two independent
directions then correspond to right- and
lefthand rotation defined as clockwise or
counterclockwise when the wave is
viewed by a person looking at the wave
going away from the observer, Figure
3.4. This is the IEEE definition for
circular polarization (i.e., righthand
polarization), the electric field vector
rotates counterclockwise in time for an
approaching wave and clockwise for a
receding wave; for a lefthand
polarization, the electric field vector
rotates clockwise for an approaching
wave and counterclockwise for a
receding wave, [5]. Linear polarization
can be transformed into circular
polarization by shifting the phase of a
linear component by 90°. Transmitted
circular polarization can be defined in
terms of horizontal and vertical
polarizations, where circular
polarization circulation view is from an

observer located at the transmitter [5]:

The inverse transform for transmitted




linear in terms of transmitted circular is

as we may verify by taking the matrix
inverse of (3.20).

Received polarization can also be
defined in a similar manner, except now
the Ic and rc definitions change because
the viewer is now looking in the
direction of propagation, which is from
the target toward the receiver, and the
radar system has defined Ic and rc as
looking away. Therefore,

which is seen to be the complex
conjugate of the transmitted case (3.20).

Figure 3.4. Right circular polarization
for  transmitting  and receiving
directions. RC is defined as clockwise
rotation of E when viewed in direction
of propagation.

The circular polarization PSM contains
no more information than the linear
PSM. If one has computed or measured
a linear PSM, the corresponding circular
PSM can be obtained by using (3.20)-
(3.22) to obtain [5]

A characteristic feature of circular
polarization is that single-bounce
scattering changes the polarization from
Ic to rc or rc to Ic. For linear polarization
singlebounce specular scattering, the
scattered energy has the same
polarization as the incident polarization.
This occurs due to the scattered field
having a 180° phase shift from the
incident field; that is, in the opposite




direction (reflection coefficient R = -1).

3.3 FUNDAMENTAL
SCATTERING MECHANISMS
3.3.1 Electromagnetic
Fundamentals

Wave

An electromagnetic wave is vector in
nature and composed of both electric E
and magnetic H fields, which are able to
propagate by themselves. As we shall
see later, a time-changing E field is the
source for H and a time-changing H is
the source for E. Therefore once
launched, an EM wave is able to
propagate on its own. EM waves
propagate in free space as well inside
material media. All EM waves decay in
magnitude as they propagate away from
their launching source due to spherical
spreading, unless anomalous
propagation occurs, such as in ducted
propagation.

The three most fundamental
characteristics of an EM wave are
related. The wavelength  (spatial

variation) times the frequency (temporal
variation) is equal to the velocity of
propagation:
\f=v (3.24)

Wavelength X represents the spatial
distance over which the field quantities
make a complete cycle; that is, change
in value from zero to a positive peak,
back through zero to a negative peak,




and back to zero, measured in distance,
Figure 3.5. The direction of propagation
of an EM wave is specified by the wave
vector k, which has a magnitude
inversely related to wavelength, k = 2-
tt/X. Frequency/represents the number
of cycles per second for the wave,
measured in Hertz. Radian frequency a)
is 2tt/. Alternately the reciprocal of
frequency, T = IIf, represents the time
required for a wave to make a complete
cycle. The maximum velocity of an EM
wave occurs in a vacuum and is the
speed of light, approximately 3 x 108
m/s. Wavelength scales can be very
long, such as 5 x 106 m ~ 3107 mi for
60 Hz

Circular Elliptical
Figure 3.5. Wave
electromagnetic field.

nature of an

radiation, to very short such as 10-7 m
for light. For typical radar applications
Table 3.1 shows the range of
wavelength and frequency values
usually of interest. Although this is
certainly only a small part of the EM
spectrum, it is nevertheless a broad
range of values.

Sources for E and H fields are charges
and currents. Near sources, the field
lines originate on local charges; that is,
the field lines are conservative. As the
fields propagate away from sources,
they can no longer remain attached to
the source charges. Now they must close
back on themselves in a solenoidal
fashion. This is the case for a free-space




EM wave.

The direction of E and H must be
perpendicular to k. Therefore E and H
must reside in a plane perpendicular to
k. The directions of E and H are still
somewhat arbitrary. The specific
direction of E is called the polarization
of the wave. It may be linear or circular;
that is, it rotates as the wave propagates.
For linear polarization the usual
directions are horizontal or vertical if we
are doing experimental work, or for
theoretical work, we refer to a spherical
coordinate system, using the polar angle
6 and azimuth angle <f> vector
directions, Figure 3.6.

Band Frequency Wavelength

In free space, the E and H fields are
perpendicular to each other and to the
direction of propagation k, Figure 3.5.
The electric field E has units of (volts /
meter) whereas the magnetic field //has
units  of  (amperes/meter).  The
propagation vector k points in the
direction of travel of the wave and has a
scalar magnitude related to the
reciprocal of wavelength, k = 2ir/X, m-
1. In free space the E and H fields are in
phase; that is, when E peaks so does H.

An EM wave represents the transport of
energy. This is specified in terms of
power flux density, watts/meter2, and is
vector in nature because a spatial




direction is involved. This is the

Poynting vector defined as

B) Analytical Coordinate
System
Figure 3.6. Typical linear polarizations

for experimental and analytical work.

Spherical

E and H fields also represent energy
storage. Energy is split equally between
the E and H fields. The energy density is
given in terms of the E and H field

quantities and  parameters  that
characterize the material ability to store
energy:

U ="eE2 + W/m3(3.26)

Permittivity, e, characterizes a materials
ability to store electrical energy. It is
related to capacitance and has units of
farads per meter. The free-space value,
denoted by the subscript zero, is
approximately 8.85 x 1012 f/m.
Permeability, /1, characterizes a
materials ability to store magnetic
energy. It is related to inductance and
has units of henrys per meter. Its free
space value is defined exactly as 4ir x
10-7 h/m.

The velocity of an EM wave is inversely
related to energy storage,
v=-"=m/s (3.27)




which for free space has the value
¢ = -jL= «3x 108 m/s (3.28)

The speed of light in a vacuum
represents the least storage of energy.

Actual values for E and H fields,
although  sometimes  specified as
microvolts or microamps per meter, are
usually not of interest. They always
decay with distance away from a source
due to spherical spreading. However,
the ratio of E to H is of interest, and it is
called the wave impedance. In free
space it is

«120ir-377ft  (3.29)

Although equal energy is contained in E
and H, their numeric values differ by the
value of the wave impedance. When a
wave is near a conducting surface where
the tangential E must become small or
zero, the wave impedance becomes
small.

In a material medium the character of an
EM wave differs from free space due to
varying amounts of energy storage in E
and H fields. Because all materials store
at least some electrical or magnetic
energy, the wave velocity is always less
than free space. Then, depending on
specific values of e and /JL the wave
impedance is no longer 377 (unless e =




/1,), and there may be a phase difference
between E and H; that is, they do not
peak at the same time. A wave
propagating in a conducting medium
(but not a perfect conductor) has 77«
377, and E lags behind H typically by
45° due to storage of electrical energy.

3.3.2 The Scattering Process

The scattering process can be
characterized in two ways. The first is to
think of an EM wave as a billiard ball
that reflects or bounces off surfaces
often in a specular manner; that is, angle
of incidence = angle of reflection. This
view does not examine the details of the
interaction of the wave with a surface.
The second approach is to consider the
details of the interaction, which involve
induced charges and currents and the
fields that they reradiate.

When an EM wave propagating in free
space impinges on a material object
characterized by e and /x, not free-space
values, energy is reflected, transmitted,
or absorbed, Figure 3.7. Because radar
cross section is concerned principally
with  scattering  from  conducting
surfaces, let us specialize our scattering
process arguments for this case. A
perfect electric conductor (PEC) is
characterized by er = €' - j«j/eo<u = 00
as the conductivity cr, the reciprocal of




resistivity, is infinite. This would
suggest that a PEC could store an
infinite amount electrical energy, a
physical impossibility. Thus the electric
field must be zero in a PEC. Another
view of a conductor is that its electrons
are free to move instantly in response to
an electric field. However, because
these electrons represent a charge
density, they create their own electric
field, which we call the scattered field.
These electrons can move only so long
as the total electric field is not zero. The
field created by

Incident Field Characterized
Direction and Polarization

by
Scattering Body on which are Induced
Currents and Charges:

Envelope of Scattered Field due to
Induced Sources on Scatterer

Figure 3.7. Basic
scattering process.

electromagnetic

these electrons is in the opposite
direction to the applied field. Therefore,
when the scattered field is equal and
opposite to the incident field, the total
field on the conductor is zero, and a
force is no longer acting to move the
electrons. This is the notion that a PEC
surface has a boundary condition of zero
tangential electric field.




This instantaneous equilibrium does not
last. The incident wave is a time-
changing field. The free electrons move
in response to the changing incident
field to always keep the total tangential
surface field zero. With Figure 3.8
showing the background geometry and
field computation, a time sequence is
shown in Figure 3.9 for a 1X square
plate geometry illuminated
perpendicular to the plate with £'nc
along the x direction. Four time values
are shown, 0°, 30°, 60°, and 90° phase.
(The remainder of the time sequence
from 90° to 360° is a repeat of the 0° to
90° quarter, but with differing signs.) At
0° time phase, the incident E field is a
maximum at

Illumination direction for Figures 3.9
and 3.10

[llumination direction

Figure 3.8. Geometry and field
computation plane for Figures 3.9 to
3.13.

the plate, and the scattered field by the
plate is the opposite direction to make
the total tangential field zero. Later in
time the incident wave peak passes
beyond the plate and the plate-scattered
field begins to propagate out and away
from the plate, as seen in Figure 3.9(b)
through 3.9(d). At time phase of 90°, the
incident wave has a null at the plate.




The time-varying incident field causes a
time-varying charge separation to occur
on the conductor which represents a
current flow. These charges and currents

(a) E scattered, t=0deg (b) E
scattered, t=30 deg

represent the sources for the scattered
field. As the charges move, the attached
field lines move with the charge. Field
lines more than k/2 away from the
surface cannot keep up with the charge
movement due to the finite speed of
light. The more distant field lines begin
to close back on themselves and
propagate on their own away from the
source charges; that is, an EM wave is
launched and becomes a self-
propagating entity.

In the Fresnel or near zone, the E field
lines end on surface charges, and the
fields are mostly conservative in nature.
In the Fraunhofer or far field, the E
fields completely close back on
themselves, the field is solenoidal. An
example of a near- to farfield transition
for scattered field contour levels (but not
vector direction) is shown in Figure 3.10
for a 2\ plate illuminated perpendicular
to the plate as shown in the geometry
illustration of Figure 3.8. The scattered
field is symmetric about the plate; that
is, the reflected and forward waves are
the same as is required by symmetry.
The forward-scattered wave is out of
phase with the incident field so, when




the two are added, a shadow is formed
behind the plate. The two major lobes
are the forward and reflected lobes in
addition to four minor lobes at + 45°.

A very convenient description for E and
H fields is to decompose the total field
into an incident part due to sources that
are far away and a scattered part due to
the charges and currents induced on a
scattering body.

P’total “incident j “scattered
N

jjtotal _ jjincident jjscattered

AN

The incident field, which is spherical
with its 1/R spatial decay, is often taken
as a plane wave in the target vicinity;
that is,

Eincident = upol£0 e-j(kR-0>() (3.31)

which represents an incident plane wave
with polarization direction u, direction
of propagation k, and frequency <o.
Because /A. = ¢, the radian frequency a>
= 2tt/ and wave number k = 2tt/X are
related, ailk = c. An example of an
incident plane wave magnitude in the x-
z plane (Fig. 3.8) is shown in Figure
3.11, for wt = 0, traveling toward the
origin at 45° with respect to the x axis
(not very exciting!).

The field scattered in the x,z plane (Fig.




3.8), that is, radiated by induced charges
and currents, by a 2k plate illuminated at
45° is shown in Figure 3.12, for wt = 0.
We see two principal scattered-field
directions, one reflected mostly in the
specular direction (angle of incidence =
angle of reflection) and one in the
forward direction. This latter component
Is out of phase with the incident field so
that it subtracts from the incident field
to form a shadow behind the plate.

Distance Along Plate (m)

Figure 3.10. Scattered field from 2\
plate excited normal to plate.

The total field is the sum of the incident
and scattered components. This is
shown in Figure 3.13, for cot = 0, where
we can clearly see the shadow behind
the plate and the interference pattern of
the specular scattered field with the
incident wave.

3.4 SCATTERING REGIMES
Three regimes characterize RCS
scattering, depending on the ratio of
wavelength X to body size L, VL or
inversely, kL. The three regimes are the
Rayleigh region, the resonant region,
and the optics region corresponding to
X>L,

Distance Along Plate (m)

Figure 3.10. Scattered field from 2\
plate excited normal to plate.




The total field is the sum of the incident
and scattered components. This is
shown in Figure 3.13, for cot = 0, where
we can clearly see the shadow behind
the plate and the interference pattern of
the specular scattered field with the
incident wave.

3.4 SCATTERING REGIMES
Three regimes characterize RCS
scattering, depending on the ratio of
wavelength X to body size L, VL or
inversely, kL. The three regimes are the
Rayleigh region, the resonant region,
and the optics region corresponding to
X>L,

-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00
Distance Along Plate (m)

Figure 3.11. Incident plane wave at 45°.
X. a L, and X < L. The classic
illustration of cross section over these
three regions is that of a sphere as
shown in Figure 3.14, where tr has been
normalized to the projected area of the
sphere, ira2, plotted as a function of
sphere circumference normalized to
wavelength, ka = 2ira/X. When the
wavelength is much greater than the
sphere circumference, its cross section is
proportional to a2(ka)4, which shows us
that, although cr is small, it increases as
the fourth power of frequency and sixth
power of radius. When the
circumference is between 1 and 10
wavelengths the cross section exhibits
an oscillatory behavior due to the




interference of the front- face optics like
return and the creeping wave that
propagates around the sphere. This is
known as the resonant region. When the
circumference is large compared to a

wavelength, the oscillatory behavior
dies out as the creeping wave
mechanism

Distance Along Plate (m)

Figure 3.12. Scattered field from 2\
plate illuminated by a plane wave at
45°,

disappears, and we are left with only the
front-face optics reflection, which for a
doubly curved surface is a = na2, the
projected area of the sphere. This is the
optics region.

The dominant scattering mechanism in
the Rayleigh region is induced dipole
moment scattering. In the resonant
region, optics and surface wave
mechanisms dominate the scattering,
and in the optics region, surface wave
effects are minimal.

3.4.1 Low-Frequency Scattering

When the incident wavelength is much
greater than the body size, the scattering
is called Rayleigh scattering. This is
named after Lord Rayleigh’s analysis of
why

Distance Along Plate (m)




Figure 3.13. Total field from 2k plate
illuminated by a plane wave at 45°.

the sky is blue: the shorter blue
wavelengths are more strongly scattered
than the longer red wavelengths. In the
low-frequency case, there is essentially
little phase variation of the incident
wave over the spatial extent of the
scattering body: each part of the body
“sees” the same incident field at each
instant of time. This situation is
equivalent to a static field problem,
except that now the incident field is
changing in  time. For linear
polarization, the vector direction of the
incident field does not change with time,
as shown in Figure 3.15. For circular
incident polarization, the situation can
be understood by decomposing the
incident  polarization into  two
orthogonal linear polarizations, one
shifted in phase by 90° with respect to
the other. This quasistatic field builds up
opposite charges at the ends of the body;
in effect, a dipole

Sphere Circumference in Wavelengths

Figure 3.14. Radar cross section of a
metallic sphere over the three scattering
regimes.

Scattering Body

Figure 3.15. In the low-frequency region
there is little variation in either the
amplitude or phase of the incident field




over the body length.

moment is induced by the incident field.
The strength of this induced dipole is a
function of the size and orientation of
the body relative to the vector direction
of the incident field. Dipole moments
are defined as charge density times
separation distance. For example, when
the applied field is perpendicular to a
long body, the induced dipole moment
Is less than the moment induced when
the applied field is parallel to the body
axis, as suggested in Figure 3.16.

The salient characteristic of Rayleigh
scattering is that cross section is
proportional to the fourth power of the
frequency or wave number:

aawsor kA (3.32)

This behavior can be explained
qualitatively by reference to the
expression for scattered field, (3.100),
where Es a alJ. There / is a current
density related to charge by / = dg/dt =
)wq. Therefore Es °c a?q so that the
radar  cross  section, which is
proportional to (Es)2, depends on 0>4.

Because  Rayleigh  scattering is
essentially a static field problem, all the
analytical procedures for electrostatics
can be invoked. These include the
integral




Figure 3.16. Low-frequency induced
dipole moments: P is the induced dipole
moment, L is the body length, and d is
the body diameter.

equation approach (the solution to
Poisson’s equation) and the dipole and
multipole  expansions. A scalar
approach, rather than a vector approach,
Is possible because induced charge
density is the chief physical mechanism,
a scalar quantity. For low- frequency
scattering, the entire body participates in
the scattering process. Details of the
shape are not important, and therefore,
only a basic or crude geometric
description is required because gross
overall shape is more important than
detailed shape information.

For most applied problems, the
wavelength is usually small compared to
the body size so that Rayleigh scattering
is of little importance. The low-
frequency approach can be used until
there is appreciable phase change of the
incident wave over the length of the
scatterer.

3.4.2 Resonant Region Scattering

When the incident wavelength is on the
order of the body size, the phase of the
incident field changes significantly over
the length of the scattering body, Figure
3.17. Although there are no absolute
definitions, we typically take the




resonant region to be for bodies between
1 and 10A. in size, 1 < L/\A < 10. In this
region we start to have two classes of
scattering mechanisms, surface wave
effects that

Figure 3.17. In resonance region
scattering, the phase of the incident field
changes several times along the body
length.

are unigue to only the resonant region
and optical mechanisms. Surface wave
effects are nonoptical; that is, scattering
does not occur for angle of reflection
equal to angle of incidence. The name
resonant region is a bit of a misnomer.
We seldom deal with high-Q, sharply
peaked resonant phenomena. Rather we
have physical mechanisms where EM
energy stays attached to the body
surface. Surface wave types are
traveling waves, creeping waves, and
edge traveling waves. Surface wave
scattering occurs when this surface
energy is reflected from some aft body
discontinuity or, as is the case for a
creeping wave, the energy flows
completely around the body.

Surface wave scattering is independent
of body size. Cross-section magnitudes
are proportional to A2; that is, (L°A2).
From this relation we see why surface
wave effects are important for resonant
region body sizes. Surface wave effects
are present in the optical region, but the
scattering magnitudes are much smaller
than optical scattering magnitudes,
which most often are proportional to




(LA, (L2A°), (L3, A'L), or (L4, A"2).

In this scattering regime body-body
interaction is important: the field at any
part of the body is the sum of the
incident field plus that scattered by other
regions of the body. This collective
interaction determines the resultant
current density. Overall geometry is
important; however, small scale details
(relative to wavelength) are not. In this
regime an exact solution of Maxwell’s
equations is required. Typically the
method of moments is used to solve the
Stratton-Chu integral form of Maxwell’s
equations to obtain the induced currents
from which the scattered field is
obtained. Techniques of solving these
integral equations have received great
attention in the last 30 years. The

availability —of large  high-speed
computers has enabled the
implementation of integral equation

matrix methods. The advent of parallel
computers will open this capability
considerably.

3.4.3 High-Frequency Optics Region

When the wavelength becomes much
smaller than the body size, typically A <
10L, a localized scattering center
approach is utilized. In this region




collective interactions are very weak so
that the body is treated as a collection of
independent scattering centers. Detailed
geometries now become important in
the scattering process. The net scattering
from the body is the complex phasor
sum of all the individual scattering
centers. True optics scattering is defined
in the limit as A —> 0. For most cases
of interest to us, however, we must still
deal with finite body size effects. The
following  list  typifies scattering
mechanisms in what we have called the
optical regime:

. Specular scattering: This is true
optics scattering in the sense of A -» 0.
It is the ray optics case of angle of
reflection equal to angle of incidence.
The scattering is the optics mirror

reflection, and it is mechanism
responsible  for  bright  spikelike
scattering;

. End-region scattering: This is
scattering from the end regions of finite
bodies, which produces sidelobe
scattering in directions away from
specular;

. Diffraction: This is end-region

scattering in the specular direction due
to edge-induced currents at leading or
trailing edges, tips, or body regions of
rapid curvature change;

. Multiple-bounce: This is the
separate case of mutual body interaction
in the sense that one body surface




specularly scatters energy to another
body surface that is orientated to reflect
this energy back to the observer; for
example, corner reflectors and cavities.

3.5 ELECTROMAGNETIC
THEORY

Radar cross section analyses require a
knowledge of the electric field E or
magnetic field H of the incident wave as
it interacts with a scattering body. This
section reviews the laws governing
electromagnetic phenomena, which are
collectively called Maxwell’s equations,
to develop the wave equation and
discuss waves at boundaries. To more
fully understand the physics of the EM
wave, we must start with Maxwell’s
equations, which are the fundamental
laws governing all electromagnetic
behavior.

3.5.1 Source Quantities for Fields and
Maxwell’s Equations

There are four fundamental field
quantities and four fundamental source

quantities. The two electric field
guantities are
E = electric field intensity, in
volts/meter,
D = displacement  flux, in

coulombs/meter2;
field quantities are

the two magnetic

H = magnetic field
amperes/meter,

intensity, in




B = magnetic induction flux, in Tesla or
Webers/meter2;

The two electric source quantities are

p = electric charge density, in
coulombs/meter3 (a scalar);

J = electric current density, in
amperes/meter2  (a  vector); two

magnetic source quantities are

p* = fictitious magnetic charge density
(a scalar);

M = fictitious magnetic current density,
in volts/meter2, (a vector).

All  electromagnetic  behavior is
governed by a set of four equations
known as Maxwell’s equations, which
relate these field and flux variables
among themselves and to sources. These
equations totally summarize
electromagnetic behavior, and they are
usually expressed in differential form.
However, they can also be expressed in
integral form. Maxwell is associated
with these laws because he completed
the set by recognizing the need to add a
displacement term, which then

predicts the propagation of EM waves,
as later shown experimentally by Hertz.
Three of the four physical relationships
are also known under the separate
names of Gauss, Faraday, and Ampere.




Maxwell’s  equations  specify  the
divergence and curl of the vector field
quantities. They are sufficient to
completely characterize the field.
Conservative vector fields start and end
on source charges and are described by
scalar potentials. Solenoidal fields close
back on themselves and are described by
vector potentials. EM fields, which are
not static, have both conservative and
solenoidal components. Near scattering
bodies the field lines originate from the
surface charges and currents and are
mostly conservative. Far EM fields are
solenoidal; for example, a propagating
spherical wave.

Gauss’s law (Fig. 3.18) is a statement
relating electrical displacement flux to
its source the electrical charge density.
This law is a restatement of Coulomb’s
law:

\/ *D=p>D+dS=ipdV=q

where D = eE. Physically this tells us
that electric field lines originate on
electric charge and that the value of
electric field summed over a closed
surface is proportional to the enclosed
charge. This 1is the “divergence”
specification for the field and is the
conservative part.

Faraday’s law (Fig. 3.19) is the




relationship specifying the solenoidal
part of the electric field. This tells us
that the solenoidal part is caused by a
time rate of change of magnetic field:
(3.34)

where <P is the magnetic flux through
the open surface S. This tells us that the
amount of voltage induced around a
closed loop is proportional to the time
rate of change of enclosed magnetic
flux.

Ampere’s law (Fig. 3.20) is the
relationship saying that a magnetic field
may also have solenoidal components
and that this component is caused by an
electric current density J and a time-
changing displacement current dD/dt.
This last term was Maxwell’s
contribution, leading immediately to
self-propagating electromagnetic waves
(time-changing E causes H and a time-
changing H causes E):

Dipole, Adjacent Positive and Negative
Charges

Gauss’s Law: VE=p/e fEds=q/e D =
eE

Relates source charge density to field
strength E. Charge is related to scalar
potential and the  conservative
component of the electric field.

Figure 3.18. Gauss’s law: Electric
charge as the source of electric fields.




This tells us that the amount of magnetic
intensity induced around closed loop is
proportional to the current and time rate
of change of D (= eE) through the loop.
The static form of Ampere’s law is the
Biot-Savart law of magnetostatics.

The last of Maxwell’s equations (Fig.
3.21) does not have a name. It is the
source statement for the conservative
part of the magnetic induction B:

Direction of E is to generate a current
which would oppose the flux B (Lenz's
Law)

Faraday's Law: V X E = -
fE.dT = --|-J B dS=--2f

Time Changing B is related to the vector
potential and the solenoidal (non-
conservative) component of the electric
field.

Figure 3.19. Faraday’s law: Time-
changing magnetic field as the source of
electric fields.

This relation states that there is no
conservative part to the magnetic
induction B; that is, B field lines are
entirely solenoidal and must always
close back on themselves. They do not
begin or end on any form of charge
density.




These four physical laws, (3.33) through
(3.36), summarized in Figures 3.18
through 3.21 and in Table 3.2, along
with the boundary conditions on the

fields at interfaces form the
mathematical-physical basis for all
electromagnetic phenomena.

Material Body Influence

Material  bodies  influence  field

guantities because they can store electric
and magnetic energy in the microscopic
structures of the bodies; that is, induced
or manent dipole moments.

Magnetic Intensity H due to Enclosed
Current J and Time Changing D (- eE)

Ampere's Law: V X H=J +-gy j H « di
= Total Current Enclosed

Current J and time changing
displacement D are related to the
solenoidal (non-conservative)

component of the magnetic intensity H.

Figure 3.20. Ampere’s law: Current
density J and time-changing
displacement D as sources of the
magnetic intensity H.

Electric field E and displacement flux D
are related to the material electric
polarization P by

D—eOE+P




Table 3.2

Summary of Maxwell’s Equations (in a
vacuum)

I. Sources for displacement D and
electric field E are

1. Electric charge p

2. Time-changing magnetic field B

Il. Sources for magnetic flux B and
intensity H are

1. Electric current J

2. Time-changing D (= eoE)

Lines of B close on themselves
V *B=0jB-dS=0

Absense of charge as a source for B
means that B is entirely a solenoidal,
non-conservative field.

Figure 3.21. Absence of magnetic
charge as source for magnetic field B.

where eo is the permittivity of free
space. Usually material polarization P is
a linear function of the electric field, P =
XE, where the proportionality constant x




Is called the electric susceptibility.
Hence we have
D ="1+ "jeOE =ereOE (3.38)

which defines the relative dielectric
constant er, which is a nondimensional
parameter (note that eo is in units of

farads/meter).
Magnetic field H and flux induction B
are related by the material

magnetization M:
B=H+M (3.39)

W)

where im> is the permeability of free
space. In general, M is a nonlinear
function of H or B as given by a
conventional B-H or M-H curve for
magnetic materials and, as such,
exhibits the effect known as hysteresis.
Many classes of material, however, may
be characterized as isotropic as well as
linear so that we have

M=XmH (3.40)

where  Xm is  the
susceptibility. Then we have
B = (1 + Xm)R>H = |Xr(AOH

magnetic

where the nondimensional parameter [xr
=1+ Xm, and this is called the relative
magnetic permeability (note that [jlo is
in units of henrys/meter). Compared to
er, (xr may take on rather large values in
magnetic materials such as iron and
nickel. A word of caution, the concept




of jxr requires careful justification when
working with magnetic materials.

Finally, we have Ohm’s law, which
relates electric field E to current density
J:

J=aE

where the constant of proportionality a
is the conductivity of the medium and is
in units of Siemens/meter. (In older
literature, a was expressed as mho/m,
where “mho” is “ohm” spelled
backward.

The preceding material relationships are
collectively called the constitutive
equations:

D = €r€oE B = (xr|x0H J = aE

and

3.5.2 Electromagnetic ~ Scalar

Vector Potentials

EM vector fields (indeed, all vector
fields) are described by their sources.
These can take either or both of two
forms. One source is a charge density
from which field lines start and end.
This is the conservative part of the field,
its divergence. The second source
relates to how or if field lines close back
on themselves. This is the solenoidal
part, and it is related to the field’s curl
(rotation). By specifying both the flux
source, with divergence, and the
solenoidal source, with curl, we can
completely specify the EM field in
terms of its charge and current sources.




The wuse of potential functions in
electromagnetics is an alternate way of
expressing the fields in terms of their
scalar and vector sources in an
intermediate fashion. Scalar potential
functions express the nature of the scalar
charge density as the source of the
conservative part of the EM field
whereas the vector potential expresses
the nature of the vector current source
densities as the source for the solenoidal
part of the EM field. Maxwell’s
equations can then be applied to derive
relationships that the potential functions
must satisfy. The utility of these
potential expressions is mostly for
theoretical understanding of the sources
for vector field.

Let us state the standard results. The
scalar potential function is an integral
sum over an electric charge density with

the free-space Green’s function:
(3.44)

This potential is the “source” for the
conservative part of the E field.

The vector potential function is an
integral over a current density (a vector
quantity) with the free-space Green’s
function:

A(r) ="/ JindF <3-45)

The magnetic field B is completely
solenoidal, since V ¢« B = 0, therefore it




Is expressed entirely in terms of the
vector potential A:

B(r)=V xA(r) (3.46)

which shows that the magnetic field B
has only electric current as its source.
The electric field E, has both
conservative and solenoidal parts, it is
expressed by using both potential
functions:

E(r) =-V#r) -~ (3.47)

which shows that the E field has electric
charge and current as its source.

This last expression is of great use in
numerical computations for the scattered
field due to currents induced on a
scattering body. In the far field the E
field lines are solenoidal and expressed
as due to only the transverse
components of A. Therefore if we know
J either by a numerical computation or
an assumption such as physical optics,
then the scattered field is simply found
as

£scat, e or 4.1) =
m if~r~dV (3.48)
JANTR

T+ . A) = -yt \(n

This expression is sometimes called the
radiation integral, because it tells us
directly the scattered field in terms of
the source currents.

Rather than solving for the potential
functions and then the fields by the
appropriate gradient and curl differential
vector operations, modern numerical
methods usually solve the integral or




differential Maxwell’s

directly.

equations

3.5.3 Wave Equation
Maxwell’s equations, after the addition
of the term by Maxwell and for whom
the entire set is named, predicts or
allows EM fields to propagate on their
own away from charge and current
sources. It is instructive to derive the
wave equation and examine the nature
of this wave that it predicts. Before we
jump into the usual derivation, let us
first reflect on the fact that Faraday’s
law tells us that a time changing B( =
yuH) field is the solenoidal source for E
and that Ampere’s law, as amended by
Maxwell, tells us that a time-changing D
(= eE) is the solenoidal source for H.
Therefore, a time-changing H causes E,
and a time-changing E causes H.
An electromagnetic wave “is its
own source,” and hence becomes self-
propagating.

We start the derivation by assuming
time harmonic fields expressed in
complex phasor notation where the
actual field is the real part of the
complex quantity:

E(r,f) = E(r) ¢j*' (3.49)

The choice of (+ )cot) follows the
electrical engineering convention, as the




alternate choice of (-\ojt) would follow
the physics convention. This choice,
although arbitrary, has an impact on the
choice for the free-space Green’s
function:

In either choice, the physical fields are
the real part:

Ephysicai(r) = »t(E*“ e**) = Ea cos (at +
4>a)ea (3.51)

where <£ is the phase of the indicated
vector component of E (each component
has its own phase).

Maxwell’s equations then take the
following form for this time-harmonic
assumption and the constitutive
relations, using +jwf, The wave equation
is obtained by taking the curl of
Faraday’s law to obtain

The curl is expanded for charge-free
region (away from charge sources)
where

We note that to obtain the wave
equation we have taken the curl of the
curl of a vector field. Because the curl is
a measure of rotation, we compute the
“rotation of the rotation,” a type of
second derivative or acceleration term.
We shall see that this “acceleration” of
the field (when a = zero) is proportional
to the negative of itself, and hence, an
oscillatory solution is obtained. This
occurs in mechanics when the force is
opposite to the direction of motion.
When cr is not zero, the acceleration has




another term, - jco/ioE, which leads to
damping of the wave due to resistive
losses.

The wave equation for the electric field
is finally obtained by using (3.53) in
(3.54):

V2E = jco/jLoE — aPfxeE (3.55)
for free space or dielectric media, where
a = 0, and for k2 = 0?ixe = (2tt/A)2, we
obtain

V2E+k2E=0 (3.56)

The solution of this wave equation can
take several forms depending on the
coordinate system. The first is a plane

wave in  rectangular  coordinates
(nonphysical because spherical
spreading is not allowed):

E(r,0 = Eoe-i(k-*-««)  (3.57)

which  corresponds to a wave
propagating in the k direction with
wavelength A and radian frequency <u
Its associated magnetic field is obtained
from (3.34) in Faraday’s law to obtain

which shows us that E, H, and k are
mutually orthogonal. The ratio of E to
H, the wave impedance, is found by
identifying




where Z is the intrinsic impedance of
the medium. With this definition the
wave equation shows us that

ZH=kxE (3.60)

The velocity of propagation is v, where
c is the velocity in the absence of
material media,

n ylelj, VerfXr Veg/uo
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A summary of the wave nature of
electromagnetic fields is shown in Table
3.3.

The constant E° term in the wave
equation solution must be orthogonal to
k. This means that E is arbitrary to the
extent that it must reside in a plane
perpendicular to k. The actual direction
of E is called polarization and is
determined by the sources that launched
the wave (e.g., the antenna).

Plane wave concepts are convenient for
analytical purposes, but waves in the
real world are spherical. Their
magnitudes fall off inversely with
distance from their localized source
point:

so that the energy flux, E2, decays as
1/i?2. For a two-dimensional coordinate
system with infinite line sources we can
also have a nonphysical cylindrical
wave of the form

which has an energy flux decay of HR.
The plane wave, although not physical,
Is a very useful concept because a




spherical wave at very large distances
does indeed appear to a local target as a
plane wave because target dimensions
would be much smaller than the wave
curvature. Therefore a spherical wave
from a distant radar incident on a
scatterer can be treated as a plane wave.

Table 3.3

Wave Equation Summary (in a vacuum)

Maxwell says;

B (= |xoH) is related to time-changing D
(= e0E)
D (= eoE) is related to time-changing B
(=nol/)

The wave equation is derived from
Maxwell’s equations and shows that an
electromagnetic wave has the following
characteristics:

E and H are wavelike, oscillating in time
and space.

An EM wave has both E and H
components.
E is perpendicular to H.

E and H are perpendicular to the
direction of propagation k.

Velocity of propagation = —7= = J-j—
= ¢, the speed of light in free space.
V6(x Veon.o

(Z.




Ratio of E to H is the wave impedance
|— = 3771t for free space.

In a plane perpendicular to k, E is
arbitrary, hence the concept of
polarization.

3.5.4 Waves at Boundaries

Radar cross section phenomena is
inherently a study of what happens
when an EM wave strikes a boundary.
This study involves boundary conditions
and reflection coefficients. Based on the
physical reasoning that a charge can be
neither created nor destroyed and that
electromagnetic fields are created by
charge and current distributions, the
fields must satisfy certain boundary
conditions at the interface between two
different media. The conditions can be
derived from the integral form of
Maxwell’s equations applied to an
interface.

The derivation for the surface
perpendicular B and D fields require the
use of a small “pillbox” volume and the
respective divergence equations in
integral form.

The normal components of B must be
continuous; therefore,

where n is a unit normal outward from
the surface. The normal component of D




Is discontinuous by the amount of free
surface charge density,

Tangential field boundary conditions on
E and H are derived using the two curl
equations in integral form (Faraday’s
and Ampere’s laws) using a small
rectangular loop at the interface. This
leads to the requirement that the
tangential E field be continuous across
the boundary:

and that the tangential components of
the H field be discontinuous by the
amount of surface current density J:

The surface current can have a nonzero
value when the integration loop is
reduced to zero only when J5 is infinite.
This requires that the conductivity cr be
infinite,

meaning that the surface must be
perfectly  conducting. For  finite
conductivity, the tangential magnetic
field is continuous across the boundary:
»X(H,-H2)=0 (3.68)

A summary of boundary conditions is
given in Figure 3.22.

Figure 3.22. Summary of
electromagnetic boundary conditions.

3.5.5 Reflection Coefficients

No study of RCS can be complete
without a discussion of reflection
coefficients. These help to describe
specular scattering from surfaces, which




Is the major scattering mechanism for
most targets. However, they do not
necessarily apply to other scattering
mechanisms, such as end-region, EHE8

BIEERBBHBN, and surface wave scattering.

When a wave impinges on an interface,
part of the wave is reflected and part is
transmitted, Figure 3.23. At the
interface, the incident, reflected, and
transmitted wave have the same phase:
Aincident , . _ “reflected , j,
Aransmitted . j. 597

This leads to Snell’s law, which requires
the angle of reflection be equal to the
angle of incidence,

greflected _ Qincident " 7Q)
Figure 3.23. Reflection and transmission
at an interface.

This specular scattering relationship is
the central concept for high-frequency
optics regime scattering.

The angle for the transmitted ray may be
computed from (3.69) as
k\ sin $i = &2 sin 02

which may be recast in terms of the
index of refraction n of each medium (as
k = noilc):

«isinft=«2sin (h




where n\ and «2 are the indices of
refraction of the two media separated by
the interface. When a wave passes from
air, n\ = 1, to a more dense medium, «2
>1, the wave slows and bends toward
the normal:

sin02 =—sin $\ n2

The bending of rays in passing

from one medium to another is known
as refraction. Because the bending is
governed only by the electromagnetic
properties of the media on either side of
the interface, the refractive indices are

sufficient to characterize the
mechanism.
Reflection and Transmission

Coefficients

The amount of specular reflection and
transmission of electric and magnetic
fields at a plane interface can be
expressed in terms of the Fresnel
reflection and transmission coefficients
associated with the interface, R and T.
These are functions of polarization,
incident angle, and material properties.
In general if El, Er, and E' are the
incident, reflected, and transmitted
fields at the interface, the reflection, and
transmission coefficients are defined as
field ratios (not power),

(3.74)

These are functions of polarization,
electromagnetic material parameters (e,
(jl) for each medium, and the angle of
incidence. When the E field is polarized




perpendicular to the plane of incidence,
the boundary conditions require that [6],

and when the incident E field is
polarized in the plane of incidence we
have
(3.76)

where the values of Z and k are the
intrinsic Impedances and the
wavenumbers of the two media. Z may
be complex as in general n and e are
complex numbers (the complex part is
the loss mechanism of the material):
(3.77)

The wavenumber ratio for nonmagnetic
materials reduces to the ratio of the
indices of refraction:

(3.78)

An example of R as a function of
incident angle for a e = 1 to e = 4
interface, such as air to fiberglass, is
shown in Figure 3.24. Note that for
parallel polarization R becomes almost
zero near 65°. This is called the
Brewster angle, where little energy is
reflected and most is transmitted into
the second medium.

When the incidence angle is normal to
the interface, d\ = 0°, and the two
reflection coefficients reduce to the
same value;




If medium 2 is a very good conductor
(metal or seawater at 10 GHz) so that its
impedance is very low, Z2 0, then R —*
— 1, meaning that the wave is entirely
reflected and suffers a phase change of
180°. If medium 2 has a very high
impedance, then R —*m +1, so that all
of the energy is again reflected, but this
time without a phase change. If Zj = Z2,
no reflection occurs and the impedance
on each side of the interface is the same,
which would be the special case for er =
fir.

The formalism for EM waves (waves in
space) and transmission lines (waves
attached to a structure) have a great deal
in common. Figure 3.25 lists the
analogous relationships.

The reflection and transmission
coefficients have been defined for field
quantities when no absorption takes
place, hence conservation of energy
requires that

Angle from Normal (degrees)

Figure  3.24.  Fresnel  reflection
coefficients for an air/er = 4 interface
for E parallel and perpendicular to plane
of incidence.

When R is expressed using a decibel
scale, the relationship is
RdB = 20 log10(£) (3.81)




where we convert field (voltage) to
power. The reference value is often
taken as unity; that is, a metal surface.

The relationship between R and T is [6]
1+R=T (3.82)

because the tangential components of E
must be continuous across the interface
and boundary conditions represents but
one point of view. The second view rec-
coefficient becomes

Transmission Line EM Wave

Figure 3.25. Transmission line/EM
wave analogy.
(3.83)

The reader is directed to the literature
for the case when absorption also needs
to be included; for example, when the
second medium has nonzero
conductivity or a loss tangent.

The dielectric constant e can take on
complex values if a material has
nonzero conductivity. In this case the
wave equation has the form
V2E + (— jaifur + a?/j,e)E O

therefore we identify the wave number k
as a complex number:
(3.85)




where we identify the permitivity also
as a complex number,
(3.86)

The imaginary part of k leads directly to
absorption of the wave
(3.87)

For a good conductor, 4' = da>e> 1, and
the complex wave number becomes
k~"-"Kk 8

where Sis the skin depth and is equal to
(ir/jLur)'172 = (2/kijo)in. Therefore a
wave in a good conductor is attenuated
by 63% (1/e) is a distance 5.

These wave reflection formulas show
that, if small reflections are desired,
such as for RCSR, then the wave should
never ever see large changes in
impedance. Rather, gradual impedance
changes are desired.

In summary, we see that the reflection
of wave from plane boundaries depends
on polarization, angle of incidence, and
EM material parameters of (/A, e),
which, in general, are complex numbers
and frequency dependent.

3.5.6 Wave Reflection from Surface
Current Point of View

The  development of  reflection
coefficients in terms of intrinsic material




impedance and boundary conditions
represents but one point of view. The
second view recognizes that the
scattering processes of reflection and
transmission occur because the incident
wave induces currents at a material
interface. These currents, in turn,
produce a scattered wave that reradiates
energy in various directions.

In this context, the total field Hr is the
sum of an incident part and a scattered
part:

jgTotal _ “incident Ascattered ~ g(®
jjTotal _jjincident _j_ jjscattered

The boundary conditions are on the total
field. These boundary conditions may
be represented as equivalent source
currents and charges, which then
become the source of the scattered field.
The surface electric and magnetic
currents are then interpreted in terms of
the total tangential fields at the surface.
The tangential magnetic field is
expressed as an electric current:
hxHr=1Js (3.90)

while the tangential electric field is

expressed as a fictitious magnetic
current,
hxET =-M. (3.91)

The corresponding electric and magnetic
charge densities are related to their
respective currents through the notion of




conservation of charge:

For the special case of a perfect
conductor, at whose surface the total
tangential electric field must be zero, the
magnetic current and charge are zero:

In the general case of scattering from
electric or magnetic bodies, Er and Hr
are finite on an interface; hence, both J
and M must be considered. As pointed
out by Stratton, magnetic currents and
charges have never been observed in
nature, yet they form a useful
mathematical artifice when we enforce
arbitrary boundary conditions in terms
of induced source currents.

3.5.7 Stratton-Chu Equations for the
Scattered Field

When several regions of space are
involved, we can use Maxwell’s
equations in conjunctions with the
vector Green’s theorem to arrive at a set
of field equations for the scattered field.
This has been done by Stratton and Chu,
[7]. Consider the geometry of Figure
3.26 where Region | is separated from
Region Il by a surface S. Assume that
there are magnetic and electric source
currents and charges in each region. The
field anywhere in Region | is given by
the Stratton-Chu equations as the sum of
a volume integral over the source in
Region | and a surface integral over the
fields on surface S caused by the
sources in Region Il.




The Stratton-Chu equation for the
scattered E field, sometimes called the
electric field integral equation (EFIE),
IS:

and the corresponding expression for the
scattered H field, called the magnetic
field integral equation (MFIE), is:

The volume integral over the enclosed
Region | charge and current sources
gives the scattered field due to those
sources. The surface integral that
separates Region | and Il gives the fields
in Region | due the sources in Region II.
We do not have to know the sources in
Region II, only the fields that these
sources produce on surface S.

The free-space Green’s function

creates the phase delay and spatial 1/R
decay between source and field points,
where R = |r/ - rs|. These equations are
an integral form of Maxwell’s equations
and are “exact” for any frequency. Their
solution requires integral equation
techniques. Prior to the computer era,
these equations were mostly a curiosity
due to the difficulty of analytical
solutions. However, the numerical
approach known as the method of
moments uses these equations as the
starting approach for the matrix
solutions.




The interpretation that the fields at the
surface are the sources in the form of
currents and charges is apparent from

The interpretation of the tangential
fields in terms of surface currents and
perpendicular fields as surface charge is
a useful formalism for representing the
sources of the fields.

The Stratton-Chu equations describe the
general case of scattering from an
arbitrary body. For the case of a perfect
conductor, the total tangential electric
field must be zero, n x ET = 0, so that
the magnetic current M and charge
density p* are zero. Then, by using the
equation for continuity of electric
charge (3.94), (o = ck, (Ofi = kr], we
arrive at the integral equations for the
scattered E field:

(3.99)

These equations for a perfect conductor
have the following features:

1. Because the current density J = fl
x HTotal = h x (Hmc + Hscat), the
scattered field appears under the integral
making these integral equations.




2. In the far field E and H are related
by the impedance of free space.
Therefore we solve either the EFIE or
the MFIE, but not both. The only time
both need solution is for those rare cases
where internal body resonances occur.

3. In the far field, the fields are
transverse to the direction of
propagation and decay inversely with

increasing distance, thus all2 is
proportional to

Barfield a jkr) f (A* « J)ip dS

where n* is the transverse unit

polarization vector.

3.6 SUMMARY

This chapter has presented an overview
of electromagnetic scattering. We have
seen that RCS is a measure of power
scattered from the incident wave; that it
is a function of the angular orientation
and shape of the scattering body,
frequency, and polarization of the
transmitter and receiver. The scattered
wave, of which RCS is a measure, is
caused by reradiation of currents
induced on the scattering body by the
incident wave. The scattering process
breaks into three natural regimes: the
low-frequency or Rayleigh region,
where the wavelength is much longer
than the scattering body size and the
scattering process is due to induced
dipole moments where only gross size




and shape of the body are of
importance; the resonant region, where
the wavelength is on the same order as
the body size and the scattering process
Is due to surface waves (traveling,
creeping, and edge) and optics; and the
high-frequency optics region, where the
wavelength is much smaller than the
body and the scattering process is
principally a summation of the returns
from isolated, noninteracting scattering
centers.

Maxwell’s equations tell us that EM
waves are a combination of electric and
magnetic fields that are perpendicular to
each other and to the direction of
propagation. When an EM wave is
incident on a body, the boundary
conditions on the fields require that
surface currents flow. These currents, in
turn, reradiate a scattered EM wave. The
strengths of the reflected and
transmitted  waves  for  specular
scattering are given by the Fresnel
coefficients, which are functions of the
incident polarization and material
properties. Surface fields were shown to
be characterized as surface electric and
magnetic currents and charges. The
formal expressions that
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vudng goc v4i hudng truyén. Khi mot
song EM dén vat thé, cac diéu kién bién
cia trudng dan dén sy xuét hién cac
dong dién bé mit. Sau d6 nhitng dong
nay sé tai buc xa mot song EM tan xa.
Cuong do cua cac song phan xa va
truyén qua duoc biéu dién qua cac hé sb
Fresnel, nhitng h¢ sb nay phu thudc vao
d6 phan cyc téi va tinh chit vat liéu.
Nguoi ta thiy rang cac trudng bé mit
dugc dac trung bdi cac dién tich va
dong dién tir bé miat. Biéu thuc tiéu
chuan c6 dang

ba danh cong thuc trong text






