Tài liệu này được dịch sang tiếng việt bởi: Tìm bản gốc tại thư mục này (copy link và dán hoặc nhấn Ctrl+Click): https://drive.google.com/folderview?id=0B4rAPqlxIMRDSFE2RXQ2N3FtdDA&usp=sharing Liên hệ để mua: thanhlam1910 2006@yahoo.com hoặc frbwrthes@gmail.com hoặc số 0168 8557 403 (gặp Lâm) Giá tiền: 1 nghìn /trang đơn (trang không chia cột); 500 VND/trang song ngữ Dịch tài liệu của bạn: http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html Review: friction stir welding tools R. Rai , A. De , H. K. D. H. Bhadeshia and T. DebRoy*1 Friction stir welding (FSW) is a widely used solid state joining process for soft materials such as aluminium alloys because it avoids many of the common problems of fusion welding. Commercial feasibility of the FSW process for harder alloys such as steels and titanium alloys awaits the development of cost effective durable tools which lead and structurally sound welds consistently. Material selection and design profoundly affect the performance of tools, weld quality and cost. Here we review and critically examine several important aspects of FSW tools such as tool material selection, geometry and load bearing ability, mechanisms of tool degradation and process economics. #### Introduction A friction stir welding (FSW)1 5 tool is obviously a critical component to the success of the process. The tool typically consists of a rotating round shoulder and a threaded cylindrical pin that heats the workpiece, mostly by friction, and moves the softened alloy around it to form the Tổng quan: Các công cụ hàn ma sát xoay R. Rai, A. De, HKDH Bhadeshia và T. DebRoy * 1 Hàn ma sát xoay (FSW) là một quá trình hàn nối trạng thái rắn được sử dụng rộng rãi cho các vật liệu mềm như hợp kim nhôm bởi vì nó tránh được nhiều khó khăn phổ biến của hàn nóng chảy. Khả năng triển khai ứng dụng thương mại của FSW cho các hợp kim cứng hơn như thép và hợp kim titan vẫn còn đang chờ đợi sự phát triển của các công cụ giá thành cạnh tranh và bền để cho ra các mối hàn âm thanh ổn đinh (mối hàn siêu thanh về mặt cấu trúc). Việc lựa chọn và thiết kế vật liệu ảnh hưởng mạnh đến hiệu năng của các công cu, chất lương mối hàn và giá thành. Ở đây chúng tôi tóm tắt lại và xem xét (có bình luận) một số khía cạnh quan trọng của các công cụ FSW như sự lựa chọn vật liệu công cụ, hình dạng và khả năng chịu tải, cơ chế suy hao công cu và tính kinh tế của quy trình. joint. Since there is no bulk melting of the workpiece, the common problems of fusion welding such as the solidification and liquation cracking, poro-sity and the loss of volatile alloying elements are avoided in FSW. These advantages are the main reasons for its widespread commercial success for the welding of aluminium and other soft alloys. However, the FSW tool is subjected to severe stress and high temperatures particularly for the welding of hard alloys such as steels and titanium alloys and the commercial application of FSW to these alloys is now limited by the high cost and short life of FSW tools. Although significant efforts have been made in the recent past to develop cost effective and reusable tools, most of the efforts have been empirical in nature and further work is needed for improvement in tool design to advance the practice of FSW to hard alloys. This paper critically reviews recent work on several important aspects of FSW tools such as the tool geometry, issues of material selection, microstructure. load bearing ability, failure mechanisms and process economics. ### Commonly used tool materials ### Tool steel Materials such aluminium as magnesium alloys, and aluminium matrix composites (AMCs) are commonly welded using steel tools.8 17 Steel tools have also been used for the joining of dissimilar materials in both lap and butt configurations.18 25 Lee và các cộng su.18 welded Al-Mg alloy with low carbon steel in lap joint configuration using tool steel as tool material without its excessive wear by placing the softer Al-Mg alloy on top of the steel plate and avoiding direct contact of the tool with the steel plate. In butt joint configuration, the harder workpiece is often placed on the advancing side and the tool is slightly offset from the butt interface towards the softer workpiece.20 23 Cold worked X155CrMoV12-1 tool steel was used by Meran and Kovan25 for welding of 99-5% pure Cu with CuZn30 brass in butt joint configuration. Oil hardened (62 HRC) steel tool has been used to successfully weld Al 6061 +20 vol.-%Al2O3 AMC9 and Al 359 + 20 vol.-%SiC AMC.11 Tool wear during welding of metal matrix composites is greater when compared with welding of soft alloys due to the presence of hard, abrasive phases in the composites. For FSW of AMCs, some studies 9,11,26 have shown that the tool wears initially and obtains a self-optimised shape after which wear becomes much less pronounced. This self-optimised final shape, which depends on the process parameters and is generally smooth with no threads, can reduce wear when used as the initial tool shape. Total wear was found to increase with rotational speed and decrease at lower traverse speed, which suggests that process parameters can be adjusted to increase tool life.9,11 Prado và các cộng su.9 argued against the need for threads in the tools because the tools continued to produce good quality welds even after the threading had worn out and tool had obtained a smooth shape. Polycrystalline cubic boron nitride (pcBN) tools Owing to high strength and hardness at elevated temperatures along with high temperature stability, pcBN is a preferred tool material for FSW of hard alloys such as steels and Ti alloys.27 36 Furthermore, the low coefficient of friction for pcBN results in smooth weld surface.37 However, due to high temperatures and pressures required in the manufacturing of pcBN, the tool costs are very high. Owing to its low fracture toughness, pcBN also has a tendency to fail during the initial plunge stage. Maximum weld depths with pcBN tools are currently limited to 10 mm for welding of steels and Ti alloys.37 Bo Nitrit has two crystal structures, the hexagonal and cubic varieties. hexagonal form has a layered structure and hence is more suited as a lubricant. The cubic (zinc blende structure) form is usually prepared by subjecting hexagonal version to high temperatures and pressures, similar to what is followed in producing diamond from graphite. The cubic form is second in hardness only to diamond and has greater thermal and chemical stability than carbon. The phase is also chemically inert to iron,38 reportedly even up to 1573 K.39,40 Like diamond, pcBN has a high thermal conductivity which helps avoid development of hot spots on tools. A high thermal conductivity also helps in the design of liquid cooled tools.41 The best properties are obtained with single phase cubic boron nitride (cBN), produced without using any binder. Such a material can be prepared by sintering commercially pure hexagonal boron nitride at high pressures (6-8 GPa) and temperatures (1773-2673 K).39,42,43 The fracture toughness for pcBN with a grain size in the range 2-12 mm is found to be ~7MPam1/2 at ambient temperature.42 Mixtures of cBN with binders exhibit a ductile to brittle transition temperature in the range 1323-1423 K depending on the fraction of the nitride relative to the other phases. Research on the wear properties of pcBN as a cutting tool material for hardened steels and superalloys has shown that abrasion and diffusion are the wear mechanisms.45 Konig and Neises45 studied the wear of two grades of pcBN with different sizes of the cBN and binder. The binder was AlN-AlB2 in one grade and TiC based binder with some AlB2 and W in the other grade. The cBN contents were ~88 and 50% in the first and second grades respectively. Since the binder is typically much softer than the ceramic, its concentration affects the wear resistance of the tool. Heating of a tool at 1223 K showed that the binder was recrystallised whereas the cBN crystals remained unchanged.45 No evidence of chemical reaction between the binder and the workpiece material (100Cr6 steel) was found. The weakening of the binder due to structural changes was assumed to reduce the wear resistance of pcBN tools. Konig and Neises45 evaluated pcBN grades of FSW tools based on real cutting tests and model tests. In model tests, diffusion couples of pcBN and 100Cr6 were exposed to 1223 K for 20 h followed by abrasion of pcBN surfaces with a diamond indenter. Since the relative wear of the two grades of pcBN in cutting tests was opposite to that observed in the model tests, they argued for possible presence of other wear mechanisms. They suggested that the breaking out of cBN crystals following removal of binder, and conversion of cBN to its soft, hexagonal form at high temperatures could be the possible wear mechanisms. Hooper và các cộng sự.46 compared the wear in TiC-cBN tool with that in cBN discussed different and mechanism. The chemical wear of cBN is exacerbated by the formation of extensive defect structures above a threshold temperature of 1200 K. They suggested that the lower thermal conductivity of TiC-cBN based tool compared with the cBN based tool resulted in higher temperatures and a more stable protective layer. Several other studies47 49 have been carried out on the mechanisms of cutting tool wear. However, it is not clear if, and to what extent, these various wear mechanisms are relevant to the FSW process. Tool wear affects not only the tool life but also the weld characteristics. Park và các cộng sự.34 examined FSW of ferritic, duplex and austenitic steels with pcBN tool and found that boron and nitrogen pick-up from worn tool was more for steels having higher steady state flow stress. Nitrogen contents in the stir zones of both ferritic and duplex steels, as well as in the retreating side of the austenitic steel, were about the same as that in the base metal. On
the other hand, the nitrogen content in the advancing side of austenitic steel varied between two to five times the base metal content. Boron from the pcBN tool reacted with chromium in austenitic steels to form borides leaving the weld material susceptible to corrosion and pitting. Zhang và các cộng sự.30 used pcBN tool to weld commercially pure Ti and observed severe tool wear. The debris from the tool reacted with Ti to form TiB2; both TiB2 and pcBN debris contributed to the grain refinement as well as increase in surface hardness. Nelson50 reported a pcBN tool life sufficient for the welding of a 45 m long high strength low alloy steel; although the thickness of the steel was not reported, a clue can be obtained from later work where high strength low alloy-65 of 6 mm thickness was welded using pcBN tools.51 Sorensen52 investigated the wear and fracture sensitivity of three grades of pcBN tools and obtained a tool life of ~60 m for the welding of a structural steel; although the thickness of the steel was not stated, it is known that the maximum weld depth achievable now for pcBN tools is 10 mm.37 In an FSW study done by Jasthi và các cộng sự.53 on Fe-Ni alloy (invar), higher thermal conductivity of pcBN (100250 W m2 K21) compared with that of the tungsten- rhenium alloy, W-25 wt-%Re (55-65 W m2 K_1) resulted in higher heat loss and lower workpiece temperatures. The traverse and vertical direction forces on the tool pin were much higher for pcBN than for W-25 wt-%Re tool; the lower forces in case of W-25 wt-%Re tool were attributed to the higher workpiece temperatures. Tool wear in pcBN was insignificant compared with W-Re and tool debris was found in the workpiece in the latter case. The coefficient of thermal expansion and ultimate strengths of the welds were similar to those of the base metal for both the tools. Microstructural differences, such as the presence of recrystallised grains in welds made with pcBN tool, were attributed to differences in thermal conductivities of the two tool materials. #### W based tools Commercially pure tungsten (cp-W) is strong at elevated temperatures but has poor toughness at ambient temperature, and wears rapidly when used as a tool material for FSW of steels and titanium alloys. It is known that exposure of cp-W to temperatures in excess of 1473 K causes it to recrystallise and embrittle on cooling to ambient temperature. Addition of rhenium reduces the ductile to brittle transition temperature by influencing the Peierls stress for dislocation motion.54 This led to the development of tungstenrhenium alloys, with W-25 wt-%Re as a candidate material for FSW tools,55 and more recently, a variant of this reinforced with ~2% of HfC.56 Steels and titanium alloys are successfully welded by W-25 wt-%Re tool. For example, Weinberger và các cộng sự.57 produced good quality welds on martensitic precipitation hardened steels using a W- 25 wt-%Re alloy tool, which is about four times stronger than cp-W at 1273 K.58 It has at the same time a lower ductile to brittle transition temperature than cp-W and improved fracture resistance and wear resistance at room temperature.37 Liyanage và các cộng sự.59 used W-25 wt-%Re alloy tool to make dissimilar welds between Al alloy and steel, and between Mg alloy and steel with some tool wear. Gan và các công sư.58 modelled the degradation of cp-W tool through plastic deformation in welding of L80 steel. Considering only plastic deformation they recommended a minimum yield strength at an elevated temperature (1273 K) for their welding conditions which W-25 wt-%Re alloy and pcBN could satisfy. Since pcBN is brittle and boron from pcBN may get dissolved into base material to form an undesirable phase, the W- 25 wt-%Re alloy was recommended by the authors. Their work did not consider the influence of bending and torsion loads on tool, or erosion of tool material. It should be noted that Re is an incredibly expensive element, and the processing required is also costly.60 As a consequence, such tools are unlikely to see widespread exploitation, in spite of their elevated temperature capabilities and reasonable ductility. Tungsten carbide (WC) based tools have also been exploited in investigations of the feasibility of FSW of steel61 and titanium alloys.62,63 The toughness of WC is said to be excellent and the hardness is ~ 1650 HV. The material is apparently also insensitive to sudden changes in temperature and load during welding trials.61 Given the proprietary nature of tool data, there is little information atru vailable on the chemical inertness of the material with respect to the metal being joined. Composite tools with different combinations of shoulder pin and materials were tried by Reshad Seighalani và các cộng sự. 62 They found that a tool with a W shoulder and WC pin at a 1° tilt angle resulted in defect free welds with yield and tensile strengths similar to those of the base metal. Teimournezhad and Masoumi64 used a tool with a non-threaded WC pin and a high speed steel shoulder to investigate the formation of onion rings in FSW of 4 mm thick Cu plates. Reynolds và các cộng sự.65,66 welded 304L stainless steel and DH 36 carbon steel with a W alloy tool (composition not reported) and were able to obtain weld tensile properties very similar to or better than that for the base metal. Choi và các cộng sự61 used WC-13 wt-%Co and WC-13 wt-% Co-6 wt-%Ni-1-5 wt-%Cr3C2 tools to friction stir spot weld low carbon steel plates. Based on X-ray diffraction scanning and electron microscopy analysis, they proposed three potential mechanisms of tool wear. First, the oxidation of WC at high temperatures may result in carbon monoxide (CO) gas at a pressure greater than the strength of the material. However, it is not clear how the oxygen was atru vailable to the immersed tool. Second, the Co binder may transform from ductile face centred cubic to brittle hexagonal close packed at high temperature resulting in fracture of the binder and its removal from the tool. Third, the possible formation of ternary W-Fe-O compounds on the tool surface may degrade the tool. It was suggested that the addition of CrC2 to WC-Co reduced the tool wear by reducing oxidation of WC. A WC-Co alloy tool with threaded pin has been used to weld 30 **AMCs** with vol.-% of SiC particulates.68 The shoulder wear and longitudinal pin wear were found to be smaller than the radial wear of pin. The radial pin wear started near the shoulder and progressed further along the length of the pin with increasing travel distance. Wear rate in mm per unit travel distance was found to be higher for low welding speeds and was attributed to the greater time atru vailable for the wear phenomenon to occur. The rate of wear was the highest at the start of the welding and was found to decrease with increasing usage. line with other observation is in studies 9, 26, 69 with cylindrical pins where it has been found that the tool pins have suffered severe deformation initially and obtained a self-optimised shape after which wear rate has decreased significantly. Other tungsten based alloys have also been used for the welding of both low and high melting point alloys. For example, Edwards and Ramulu70 used a W-La alloy (composition not reported) tool to study FSW of Ti-6Al-4V alloy. Tools made of a tungsten alloy Densimet (composition not reported) were used by Yadava và các cộng sự.71 to weld AA 6111-T4 aluminium alloy. #### Other tools High hardness, low coefficient of thermal expansion and high thermal conductivity of Si3N4 make it a useful cutting tool material.72 Coating with an inert material such as diamond or TiC can result in further improvements in its high temperature wear resistance.72,73 Even though the property requirements for cutting and FSW tools are similar, use of Si3N4 tools in FSW is not very common. Ohashi và các cộng sự.73 studied the welding of DP 590 steel with Si3N4 tools and found that O and N con-tamination resulted in the formation of finer martensite. The contamination workpiece by Si and N from the tool was prevented by TiC/TiN coating. Sintered TiC welding tool, with a water cooling arrangement to extract excessive heat from the tool, has been used for successful **FSW** of titanium.74 Molybdenum based alloy tool has been used to weld AISI 1018 mild steel75 and Ti-15V-3Cr-3Al-3Sn alloy.76 Tables 1-6 list the tool materials, tool geometries and welding variables used to weld some of the common engineering materials. Tool material selection Weld quality and tool wear are two important considerations in the selection of tool material, the properties of which weld may affect the quality by influencing heat generation and dissipation. The weld microstructure may also be affected as a result of interaction with eroded tool material. Apart from the potentially undesirable effects on the weld microstructure, significant tool wear increases the processing cost of FSW. Owing to the severe heating of the tool during FSW, significant wear may result if the tool material has low yield strength at high temperatures. Stresses experienced by the tool are dependent on the strength of the workpiece at high temperatures common under the FSW conditions. Temperatures in the workpiece depend on the material properties of tool, such as con-ductivity, for a given thermal workpiece and processing parameters. The coefficient of thermal expansion may affect the thermal stresses in the tool. Other factors that may *SD: diameter; shoulder PD: diameter; PL: pin length; PS: pin shape; SC: straight circular; TC: tapered circular; SCT: straight circular threaded; LHT (RHT): left (right) handed thread; 3F: three flats; FSSW: friction stir spot welding. Joint efficiency is the ratio of the tensile strength of the joint to that of the base metal. Table 2 Tool materials, geometries and welding variables used for FSW of several aluminium alloys* *SD: shoulder diameter; PL: pin length; PD: pin diameter; PS: pin
shape; SS: shoulder shape; SC: straight circular; SCT: straight circular threaded; TC3F: tapered circular with three flats; UTS: ultimate tensile strength; FSSW: friction stir spot welding. Joint efficiency is the ratio of the tensile strength of the joint to that of the base metal. *SD: shoulder diameter; PL: pin length; PD: pin diameter; PS: pin shape; SCT: straight circular threaded; TCT: tapered circular threaded; SSq: square; TSq: tapered square; SHex: hexagonal; THex: tapered hexagonal; TOct: tapered octagonal. Joint efficiency is the ratio of the tensile strength of the joint to that of the base metal. Table 4 Tool materials, geometries and welding variables used for FSW of several titanium and its alloys* *SD: shoulder diameter: PD: pin diameter; PL: pin length; PDt: pin diameter at the top (larger diameter) for tapered pin; PDb: pin diameter at the bottom (smaller diameter) for tapered pin; PS: pin shape; SS: shoulder shape; SC: straight circular; BM: base metal. Joint efficiency is the ratio of the tensile strength of the joint to that of the base metal. *SD: shoulder diameter; PD: pin diameter; PL: pin length; PDt: pin diameter at the top (larger diameter) for tapered pin; PDb: pin diameter at the bottom (smaller diameter) for tapered pin; PS: pin shape; SS: shoulder shape; SC: straight circular; TC: tapered circular; FSSW: friction stir spot welding; RSW: resistance spot welding; UTS: ultimate tensile strength. influence tool material selection hardness, ductility and reactivity with the workpiece material. The tool hardness is important in mitigating surface erosion due to interaction with particulate matter in the workpiece. The brittle nature of such ceramics as pcBN may undesirable if there is a significant probability of breakage due to vibrations or accidental spikes in loads. degradation may be exaggerated if the tool material and workpiece react to form undesirable phases. The properties of some of the commonly used tool materials are given in Table 7 along with remarks regarding their suitability for welding specific materials. Because of their high temperature strength, pcBN and W based alloys are commonly used tool materials for FSW of harder alloys. Good quality welds have been obtained for welding of steels for both tool materials. W-25 wt-%Re alloy tool, the most common W based tool material, undergoes significant wear compared with the pcBN tool which has superior wear resistance and abrasive properties. The thermal conductivity of the tool material determines the rate of heat removal and affects the temperature fields, flow stresses and weld microstructure. High thermal conductivity of pcBN avoids the formation of hot spots on tools and helps in the design of liquid cooled tools.41 However, a high thermal conductivity may be undesirable if excessive removal of heat from the tool/workpiece interface requires very high tool rotational speeds to adequately soften the workpiece and to reduce tool stresses. The appropriate value of thermal conductivity depends on the process variables, workpiece material and other tool material properties. Tool erosion under FSW conditions is often worsened by reactions of the tool with the workpiece or oxygen in the atmosphere. Oxidation of the tool may occur both during the plunge stage and after a welding operation when the hot tool is exposed to the environment. Metals such as chromium and titanium form a tenacious and coherent oxide layer that protects the surface from further oxidation. On the other hand, WO3 that forms on tungsten vaporises as a gas, leaving the surface unprotected. If the oxide layer is not tenacious enough and breaks down under the severe thermomechanical conditions in FSW, the reactivity of the tool will be an important consideration in the selection of tool material. The tendency of a pure metal to react with oxygen is given by the standard Gibbs energy of oxidation for 1 mole of oxygen. Figure 1 shows the Ellingham diagram for some of the metals used for FSW tools. Metals higher up in the figure are less likely to oxidise compared with those below them. The high hardness, low reactivity with oxygen and high temperature strength of metals such as tungsten, molybdenum and iridium make them good choices as tool materials. These tool properties can be enhanced further by the addition of alloying elements or coating the tool with a hard, wear resistant material. # Tool geometry Tool geometry affects the heat generation rate, traverse force, torque and the thermomechanical environment experienced by the tool. The flow of plasticised material in the workpiece is affected by the tool geometry as well as | the linear and rotational motion of the | | |--|--| | tool. Important factors are shoulder | | | diameter, shoulder surface angle, pin | | | geometry including its shape and size, | | | | | | | | | | | | | | | 1 Ellingham diagram for some of | | | metals used in FSW tools132 | | | | | | | | | | | | and the nature of tool surfaces.8,77 88 | | | These features are discussed here. | | | | | | | | | Shoulder diameter | | | The diameter of the tool shoulder is | | | important because the shoulder generates most of the heat, and its grip on the | | | plasticised materials largely establishes | | | the material flow field. Both sliding and | | | sticking generate heat whereas material | | | flow is caused only from sticking. | | | , c | | | | | | For a good FSW practice, the material | | | should be adequately softened for flow, | | | the tool should have adequate grip on the | | | plasticised material and the total torque | | | and traverse force should not be | | | excessive. Experimental investigations89 | | | have shown that only a tool with an | | | optimal shoulder diameter results in the highest strength of the AA 6061 FSW | | | joints. Although the need to determine an | | | optimum shoulder diameter has been | | | recognised in the literature, the search for | | | an appropriate principle for the determination of an optimum shoulder diameter is just beginning. | | |---|--| | | | | 2 Variation of sliding torque, sticking torque and total torque with shoulder diameter 90 | | | Arora và các cộng sự90 proposed a method to determine optimal shoulder diameter by considering the sticking Mt and sliding ML components of torque. These torques are calculated based on the tool geometry, flow stresses in workpiece | | | and the axial pressure as(1) | | | where d and mf are spatially variable fractional slip and coefficient of friction | | | between the tool and the workpiece
respectively, t is the shear stress at
yielding, rA is the distance of any
infinitesimal area element dA from the | | | tool axis and PN is the axial pressure. d and mf were given as functions of tool rotation speed and the radial distance | | | from tool axis.91,92 The total torque M is the sum of the sticking and sliding | | | components of torques. The required spindle power was calculated from the total torque as | | | | | Figure 2 shows that for the welding of AA 6061, the sliding torque continuously increases with shoulder diameter because of the larger tool/workpiece interfacial However, the sticking torque area. increases, reaches a maximum and then decreases. This behaviour can understood from equation (1) that shows two important factors that affect the sticking torque. First, with increase in temperature, the flow stress t decreases and at the same time the area increases with shoulder diameter. The product of these two opposing factors leads to a maximum in the sticking torque versus shoulder diameter plot which indicates the maximum grip of the shoulder on the plasticised material. Any further increase in the shoulder diameter results decreased grip of the tool on the material, higher total torque and higher power requirement. For these reasons, Arora và các cộng sự.90 suggested that the optimum shoulder diameter should correspond to the maximum sticking torque for a given set of welding parameters and workpiece material. The principle of optimising shoulder diameter from a consideration of maximising tool's grip on the plasticised material remains to be tested on harder materials such as steels and titanium alloys. Shoulder surface The nature of the tool shoulder surface is an important aspect of tool design. Hirasawa và các công sư.78 studied flat, convex and concave tool shoulders, and cylindrical, tapered, inverse tapered and triangular pin geometries. They found that triangular pins with concave shoulders resulted in high strength spot welds. Sorensen and Nielsen86 examined the role of geometric parameters of convex shoulder step spiral (CS4) tools and identified the radius of curvature of the tool shoulder and pitch of the step spiral important geometric parameters. Microstructure, geometry and failure mode of a weld may be significantly altered if the tool shoulder chosen is concave rather than flat.93.94 The finite element modelling results of Li và các cộng sự.95 showed that the shoulder surface angle affected the axial force depending on the tool pin radius. A convex shoulder with scrolls was shown to improve FSW process stability.96 It was argued that when a convex scroll shoulder is used in constant axial force mode, any increase in plunge depth from its normal value results in greater contact area between the shoulder and the workpiece. As a result, the axial pressure is reduced and the plunge depth decreases to its original value. Similarly, any decrease in the plunge depth lowers the shoulder/workpiece contact area resulting in higher axial pressure and a consequent return of the plunge depth to its normal value. Therefore, the FSW
process with convex scroll shoulder tends to be stable with a nearly constant plunge depth. Cederqvist và các cộng sự.96 found that the convex scroll shoulder resulted in minimum flash and no defects as opposed to concave shoulder which resulted in medium flash and some defects. It has been suggested 97,98 that the conventional rotating shoulder tools can result in high thermal gradients and high surface temperatures during FSW of low thermal conductivity alloys leading deterioration of weld quality. A stationary shoulder friction stir welding process has been developed by The Welding Institute in which the non-rotating shoulder slides on the workpiece surface as the rotating pin moves forward.97,98 Pin (probe) geometry The shape of the tool pin (or probe) influences the flow of plasticised material and affects weld properties.8,71,77,87,88,99 Kumar Kailas100 suggested that while the tool shoulder facilitated bulk material flow the pin aided a layer by layer material flow. Figure 3 shows the shapes of some of the commonly used tool pins. A triangular or 'trifluted' tool pin increases the material flow compared with a cylindrical pin.78 The axial force on the workpiece material and the flow of material near the tool are affected by the orientation of threads on the pin surface.101 Fujii và các cộng su.82 achieved defect free welds in softer alloys such as AA 1050 using a columnar tool pin without any thread. They suggested that a triangular prism shaped tool pin would be suitable for harder alloys such as AA 5083. Zhao và các công sư.102 used columnar and tapered pins - both with and without threads - and observed that the tapered pin profile with screw thread produced welds with the minimum defects in AA 2014. Hattingh và các cộng sự.81 observed that a trifluted tapered pin with a thread pitch of around 10% of the pin diameter and 15% of plate thickness produced defect free welds. Colegrove and Shercliff103 compared the computed material flow fields resulting from the use of a triangular tool with convex surfaces (Trivex) and a Triflute tool and suggested that the latter increased the downward force due to its strong augering action. Features such as threads and flutes on the pin are believed to increase heat generation rate due to larger interfacial area, improve material flow and affect the axial and transverse forces. Mahmoud và các cộng sự.104 studied the friction stir processing of SiC reinforced aluminium composite using four tool shapes - circular without thread, circular with thread, triangular and square. The probe resulted square in more homogeneous distribution of SiC particles than the other tools whereas circular tool experienced much less wear than the flat faced tools. Elangovan và các cộng su.105 studied five tool profiles - straight cylindrical, threaded cylindrical, tapered cylindrical, square and triangular - for the welding of AA 6061 aluminium alloy and found that the square pin profiled tools produced defect free welds for all the axial forces used. Lammlein và các cộng sự.106 observed significant reduction in process forces with a conical shoulderless tool that could also be used to weld plates of variable thicknesses. However, process stability, weld line align-ment and weld root defects were important issues. Insufficient material flow the on advancing side, particularly at low processing temperatures, often results in formation of defects such as wormholes. 'restir' tool, which periodically The reverses its direction of rotation, was devised by The Welding Institute to address this issue.109 An increase in the angle between the conical surface of the pin and its axis leads to a more uniform temperature distribution along the vertical direction and helps reducing in distortion.110 Buffa và các công sư.110 showed that an increase in the pin angle increased peak temperature. Furthermore, it has been suggested 110 that the helical motion of a conical pin pushes the material downwards in the front and upwards in the rear. The improved material flow results in more uniform properties the workpiece across thickness.110 As a result, tapered tools are preferred when welding thick sheets. Tools used for friction stir spot welding (FSSW) experience only torsion due to rotational motion as opposed to tools used for FSW that experience both bending moment and torsion due to linear and rotational motion respectively. Despite the differences between FSSW and FSW, the tools used for the two processes are similar. Tozaki và các cộng sự.111 used tools with cylindrical pins with three different pin lengths to understand the effect of tool geometry on microstructure and static strength in friction stir spot welded aluminium alloys. They showed that the tensile shear strength of the welds increased when longer tool pins were used. Yang và các cộng sự. 112 used tool with circular triangular pins and crosssections for welding of AZ31 Mg sheets in lap joint configuration and used Cu as tracer material to study material flow. Hirasawa và các cộng sự.78 used the particle method to analyse material flow in lap joints, for various shoulder and pin geometries, by tracking the position of reference particles originally located at a fixed distance from the top surface. For cylindrical pin tool, material flow is upwards near the pin periphery whereas the material beneath the shoulder is pushed downwards due to the axial force from the shoulder. Thus, moving away from the pin periphery, the reference line of particles curves upwards and then bends down resulting in a 'hook' formation.78,113 Characteristics of hook regions have been found to be related to mechanical properties joints.85,93,94,113 116 Hirasawa và các cộng sự.78 found that the nature of hook formation was influenced by the pin and shoulder geometries. Choi và các cộng sự.67 used cylindrical pin tools made of two different materials to evaluate the frictional wear during FSSW of low carbon steel. Т ozaki và các cộng sự.117 proposed a tool without a pin in order to avoid the hole commonly left behind at the centre of an FSSW. When this tool was used for lap joints in 2 mm thick sheets of AA 6061-T4, welds with shear strength comparable with those made with a conventional tool were obtained. The shoulder plunge was an important parameter as the stirring action was achieved by scrolls on the tool shoulder. # Load bearing ability In an FSW process, the commonly used tool experiences axial, longitudinal and lateral forces due to viscous and inertial effects.118 As the tool rotates inside the workpiece, it experiences an axial force that tends to lift the tool and is countered by the applied axial force through the tool shoulder. The longitudinal forces on the FSW tool result from the linear motion of the tool through the workpiece. The rotation of the tool combined with the linear motion results in an asymmetric flow field around the tool leading also to a lateral force on the tool in the direction perpendicular to that of the linear motion due to Magnus effect.118,119 As the workpiece comes in contact with first the pin, and then the shoulder during the initial plunge, the forces acting on the tool vary significantly due to the combination work hardening (under compression and shear) and softening due to heat generation.118,120 After the plunge, as the tool traverses some distance in the workpiece, the forces on tool stabilise at a value which is generally lower than the peak forces during the plunge state.118,120 Therefore, tools are subjected to more severe stresses during the initial plunge compared with the linear traverse stage. Tools, especially those made of brittle materials such as pcBN, are more likely to fail in the initial plunge stage than later in the welding process. Preheating of the workpiece is sometimes used to lower the tool stresses during the initial plunge. The forces and torques acting on the tool are important for several reasons. First, a larger torque corresponds to a greater power requirement for the **FSW** process.118 Second, tool deformation and wear are enhanced with increasing load on the tool leading to greater processing frequent due to more tool cost replacement. Third, tool wear may lead to contamination of the weld and deterioration of the joint properties. Atharifar và các cộng sự. 118 modelled FSW process with a threaded tool pin and calculated the axial, longitudinal and lateral forces on the pin and the shoulder. Both experimental and calculated results showed that the axial forces increased with increasing rotational speed and decreasing tool travel speed. However, the computed results of axial force were with in good agreement corresponding measured values except for a small range of angular velocities. Increase in rotational speed and decrease in tool travel speed resulted in decrease in the calculated longitudinal forces on both the tool pin and the tool shoulder. The decrease in the longitudinal force with increasing rotational speed was attributed to the higher heat generation rate and, consequently, lower flow stress. effect of travel speed on the longitudinal force was attributed to the variation in the dynamic pressure distribution along the welding direction. Both the lateral and the axial forces were influenced much more significantly by the rotational speed compared with the travel speed. The axial, longitudinal and lateral forces acting on the tool shoulder were found to be much larger than the corresponding forces on the tool pin. The calculated moments were high at low rotational and high travel speeds. The effects of travel and rotational speeds on the forces experienced by FSW tool are compiled in Table 8. The legend +/in a cell signifies that increase in the column parameter results increase/decrease in the corresponding row parameter, and (~) signifies weak or effect. power requirement, no The calculated as angular velocity times the total torque on the tool, increases significantly with
increasing rotational speed. The effect of travel speed is significant only at high rotational speed, where the increase in travel speed requires increased power. Sorensen and Stahl120 measured the longitudinal forces on the tool for varying pin lengths at constant pin diameter and vice versa. The longitudinal force on the tool was found to decrease decreasing pin length and reach a limiting value for a very small pin length (Fig. 4). The limiting longitudinal force was taken as the force experienced by the tool shoulder. Assuming that the longitudinal force tool shoulder on the independent of the pin length, the force on tool pin was calculated as the difference between the total longitudinal | force and the limiting force on the tool shoulder. For pin lengths smaller than 5-6 mm, the total longitudinal force on the tool pin varied as the quadratic power of the pin length, and the pin force increased linearly along its length with distance from the tool shoulder. However, no specific influence of pin diameter on longitudinal pin force was observed. | | |--|--| | Since the tool pin is structurally much weaker than the tool shoulder, the susceptibility of an FSW tool to | | | Table 8 Effect of travel speed and rotational speed on moment and forces*118 Travel speedRotational speed on pinLongitudinal force + — Axial force y + Lateral forcey + Moment about tool axis y — | | | on shoulder Longitudinal force + — Axial force — + Lateral forcey + Moment about tool axis y — | | | Total Longitudinal force + — | | Axial force — Lateral forcey Moment about tool axis + *Symbols + (—) indicate that an increase in the welding parameter results in larger or smaller values of the corresponding force or moment. Symbol ~ signifies weak or no effect. deform, wear and/or break will ultimately depend on the resultant stress experienced by the pin. In order to evaluate the possible performance of a pin with a specific geometry, the maximum stress on the pin should be estimated and compared with the tool material shear strength at the corresponding working temperature. Arora et a/.121 calculated the torsion and bending stresses experienced by the tool pin due to the rotational and linear motions as functions of process variables and typical pin dimensions. The three-dimensional material flow and temperature field model given by Nandan et a/.122 125 was used for the calculation of the traverse force on the tool pin FP(4) where s is the temperature compensated yield strength of the deforming material | around the tool, r is the average pin radius and L is the length of the pin. The traverse force on the tool pin was used to calculate the bending moment and the corresponding normal and shear stresses. Figure 5 shows a two-dimensional schematic diagram of traverse forces on a cylindrical tool pin. The traverse force | | |---|--| | increases with distance along the pin length because of higher flow stresses at lower temperatures further away from the tool shoulder. | | | Considering a typical two-dimensional section of a cylindrical tool pin at a distance z1 from the root of the pin, the bending stress sB may be computed as | | | where q(z) is the traverse force distribution on the tool pin, r is local pin radius and L is the pin length. The shear stressdue to the bending is expressed as | | | The shear stressdue to the torque is computed as | | | (8) | | The maximum shear stress tmax calculated from equation (8) multiplied with a reasonable value of factor of safety should be smaller than the shear yield strength of the tool material at typical stir zone working temperature to avoid tool failure during welding. The shear strength is dependent on the tool pin material while the pin geometry affects the stresses due to bending and torsion. The traverse force on the pin increases with increasing pin length121 as shown in Fig. 6. The maximum possible shear stresses in the pin decrease strongly with increasing pin radius as given by equations (1)-(4). As the pin length is often determined by the plate thickness, a minimum pin radius may be specified by considering the maximum stresses in the pin and the strength of tool material under given processing conditions. For the welding of thicker plates, a larger pin radius may be required to avoid tool breakage due to larger traverse forces. The nature of equations (5)-(8) also shows that the tool, in particular the tool pin, experiences a highest and a lowest value of tmax along each cross-sectional plane during one complete rotation (h=0-2p) leading to the imposition of a dynamic load cycle. Although the extent of such dynamic load cycle may be smaller in comparison with the steady thermal and mechanical loads, the former can also contribute to the vibration and subsequent failure of the tools. Since the maximum bending moments in the pin are present ## Weldina direction - 5 Schematic layout of a cylindrical pin and b cross-section along S-S' - 6 Variation of traverse force on pin with change in pin length120121 close to the pin-shoulder joint, it is important to have larger cross-sections at locations closer to the shoulder compared with locations farther away. As the pin radius becomes larger, more and more material needs to be moved around to fill the gap. In addition to requiring more power, it may also lead to poor weld quality if the gap is not adequately filled. Both weld quality and tool failure need to be considered for the design of pin geometry. Tool wear, deformation and failure The rotation and translation of tool through the workpiece result in its wear. The FSW tool may also deform plastically due to a reduction in yield strength at elevated temperatures in an environment of high loads. Therefore, FSW tools for welding of high strength materials such as steels are often liquid cooled.7 When the stresses are higher than the load bearing ability of the tool, failure may occur. Not many detailed studies have been done on the tool wear in FSW but diffusion and abrasion are the expected mechanisms. Reaction of the tool material with its environment, including both the workpiece and the surrounding gases, is also expected to contribute to the tool wear. Ellingham diagrams for oxide formation, shown in Fig. 1, indicate the relative propensity of oxidation of several pure metals from a thermodynamic point of view and similar diagrams may be for nitride constructed formation. Furthermore, there is a need to identify the possibility of interaction of the tool material with the workpiece by diffusion and chemical reaction in model tests and actual FSW processes. Depending on the results, a particular tool material may be a good choice for one workpiece material but not for another of similar physical properties. Some such studies for wear in cutting operations have been done for the interaction of pcBN with steels.45 49 Wear through abrasion is particularly significant in the presence of a harder second phase such as in AMCs.68 Fig. 7 shows severe initial wear of a threaded 01 AISI oil-hardened steel tool during FSW of Al6061 +20 vol.-%Al2O3 AMC. However, it has been reported that the wear rates decrease considerably after the initial wear and the smoothed (or self-optimized) tools, similar to those shown in Fig. 7, can continue producing good quality welds.9,11,26 A high strength material, such as W or pcBN, is chosen to reduce the plastic deformation of tool. Strength may be further increased through microstructural changes such as restricting the grain size in tungsten through addition of lanthanum or lanthanum oxide. Alloying with Re increases the yield strength and decreases the ductile to brittle transition temperature of tungsten.58 High fracture toughness is important to reduce the likelihood of sudden brittle failure. Some work has been done to develop new grades of pcBN with higher fracture toughness and greater tool life 41,50,126 128 Compared with the tool shoulder, the tool pin suffers much more severe wear and deformation, and the tool failures almost always occur in the pin. This is expected due to several reasons. First, the tool pin is completely immersed in the workpiece and, therefore, has to face more resistance to its motion compared with the tool shoulder, only a small part of which is inside the workpiece. Second, since most of the heat is generated near the shoulder/workpiece interface, resistance to the motion of the shoulder is much smaller than that to the pin. Consequently, a pin profile that enhances downward flow of the hotter and softer material from the top should decrease the forces on the pin. Third, the pin has much lower load bearing capabilities than the shoulder due to the high stresses resulting in the former from a combination of torsion and bending stresses in its typically slender shape. One consequence of the above observation is that composite tools 58 with harder, wear resistant material (e.g. pcBN or WC) for pin and relatively softer material (e.g. W-Re alloy) for shoulder may be an attractive option for enhancing tool life and reducing tool costs. In some cases, special techniques have been used to reduce tool wear.4,7 For example, in lap joints of dissimilar materials, the tool is placed in the softer material and contact between the tool and the harder material is avoided
to reduce the tool wear.18,24,63,129 Welding of dissimilar metals 23 in butt joint configuration by offsetting the tool towards the softer alloy side needs to be more thoroughly tested. Some of the other strategies to reduce tool wear are to weld at lower welding speeds, preheat the workpiece to reduce its mechanical resistance, preheat the tool above the ductile to brittle transition temperature and use sufficient inert gas cover.4,7 However, the commercial applicability of these techniques remains to be tested. ## Tool cost While the energy cost for the FSW of aluminium alloys is significantly lower than that for the fusion welding processes, 130 the process is not cost effective for the FSW of hard alloys. Tools made of pcBN are often used for the welding of hard materials. However, expensive due pcBN to high temperatures and pressures required in its manufacture. Santella và các cộng sự.33 did an approximate cost benefit analysis for FSSW with a pcBN tool versus resistance spot welding (RSW) of DP 780 steel. The equipment and utility costs for FSSW were assumed to be 90 and 30% respectively of the costs in RSW; however, they did not report the dollar amounts of these costs. They further assumed that a typical RSW tool tip lasts 5000 welds and costs \$0-65 per tip. Considering the costs involved with equipment, utility and the tool, they estimated that in order for the FSSW to be cost competitive with respect to RSW, each FSSW tool, costing ~\$100, needs to make 26 000 spot welds. Since the cost of each pcBN tool was significantly greater than \$100 and typical tool life was between 500 and 1000 welds, they suggested lowering tool costs as an important need. Feng và các cộng sự.131 produced over 100 friction stir spot welds on dual phase steel (ultimate tensile strength 600 MPa) and martensitic steel (ultimate tensile strength 1310 MPa) without noticeable degradation of the pcBN tool. Several FSSW tools have been developed with Si3N4, TiB2 and pcBN.127 The costs of Si3N4 and TiB2 tools were less than 25% of the cost of pcBN tools.127 Machine loads for Si3N4 tools were ~75% of that for pcBN tools and the two tools resulted in similar joint strengths.127 Tools of W-Re or W-La alloys are relatively less expensive than that of pcBN tool but suffer considerably more wear compared with superabrasives due to their relatively lower high temperature strength and hardness. ## Concluding remarks Cost effective and long life tools are atru vailable for the FSW of aluminium and other soft alloys. They are needed but not currently atry vailable for the commercial application of FSW to high strength materials. Tool material properties such as strength, fracture toughness, hardness, thermal conductivity and thermal expansion coefficient affect the weld quality, tool wear and performance. Reactivity of tool material with oxygen from the atmosphere and with the workpiece is also an important consideration. pcBN and W based alloys are important candidate materials for the FSW of high strength materials. High strength, hardness and high temperature stability of pcBN allow much smaller wear compared with other tools. Low fracture toughness and high cost of pcBN are issues that need attention. W based alloys, although not as hard and wear resistant, are more affordable options and have been used to weld steels and Ti alloys in a limited scale. There is also an interest in Si3N4 as a prospective tool material because it had produced welds comparable with pcBN tools at a much lower cost. Further developments in FSW tool materials are required to address the problem of high tool cost with low tool life during welding of harder alloys. Heat generation rate and plastic flow in the workpiece are affected by the shape and size of the tool shoulder and pin. Although the tool design affects weld properties, defects and the forces on the tool. they currently designed are empirically by trial and error. Work on the systematic design of tools using scientific principles is just beginning. Examples of recent studies include calculation of flow fields for different tool geometries and the calculation of tool shoulder dimensions based on the tool's grip of the plasticised material. The pin cross-sectional geometry and surface features such as threads influence the heat generation rates, axial forces on the tool and material flow. Too1 wear. deformation and failure are also much more prominent in the tool pin compared with the tool shoulder. The axial. longitudinal and lateral forces on the tool can be calculated as functions of process parameters. or evaluated from measured data. Estimation of the load bearing ability of the tool pin is needed considering the maximum stresses in the tool pin due to combined effects of bending and torsion. There is a need for concerted research efforts towards development of cost effective durable tools for commercial application of FSW to hard engineering alloys. Ước tính khả năng chịu tải của chốt công cụ là cần thiết để xem xét các ứng suất cực đại trong chốt công cụ do ảnh hưởng kết hợp của uốn và xoắn. Có một nhu cầu cho các nỗ lực nghiên cứu phối hợp hướng tới sự phát triển các công cụ bền với giá cả cạnh tranh cho các ứng dụng thương mại của FSW với hợp kim kỹ thuật cứng.