

Tài liệu này được dịch sang tiếng việt bởi:

Tìm bản gốc tại thư mục này (copy link và dán hoặc nhấn Ctrl+Click):

https://drive.google.com/folderview?id=0B4rAPqlxIMRDSFE2RXQ2N3FtdDA&usp=sharing

Liên hệ để mua:

thanhlam1910_2006@yahoo.com hoặc frbwrthes@gmail.com hoặc số 0168 8557 403 (gặp Lâm)

Giá tiền: 1 nghìn /trang đơn (trang không chia cột); 500 VND/trang song ngữ

Dịch tài liệu của bạn: <u>http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html</u>

Physiology of a marine	Sinh lý học của một chủng	
Beggiatoa strain and the	Beggiatoa biển và sinh vật đi	
accompanying organism	kèm Pseudovibrio sp Một loại	
Pseudovibrio sp a facultatively	vi khuẩn nghèo dinh dưỡng	
oligotrophic bacterium	không bắt buộc	
Table of contents	Mục lục	
Summary 6	Tóm tắt 6	
Zusammenfassung 7	Zusammenfassung 7	
Chapter 1 - General introduction	Chương 1 - Giới thiệu chung 10	
10		
Aims of the study 24	Mục đích của nghiên cứu 24	
Chapter 2 - Physiology and mat	Chương 2 - Sinh lý học và sự	
formation of a marine Beggiatoa	hình thành thảm vi khuẩn	
culture 25	Beggiatoa biển 25	
2.1 Sulfur respiration in a	2.1 Hấp thụ lưu huỳnh trong	
marine chemolithoautotrophic	chủng Beggiatoa phát triển tự	
Beggiatoa strain 27	dưỡng hoá năng vô cơ 27	
2.2 Coordinated movement of	2.2 Chuyển động phối hợp của	
Beggiatoa filaments in oxygen-	các sợi Beggiatoa trong gradient	
sulfide gradients and the effect	oxy-sulfua và ảnh hưởng của ánh	
of blue/green light 43	sáng xam lam/xanh lục 43	
Chapter 3 - Co-cultivation of a	Chương 3 – Nuôi cây động thời	
marine Beggiatoa strain and	chủng Beggiatoa biên và	
Pseudovibrio sp. 47	Pseudovibrio sp. 47	
3.1 A chemolithoautotrophic	3.1 Chủng Beggiatoa phát triên	
Beggiatoa strain requiring the	tự dưỡng hoá năng vô cơ đòi hỏi	
presence of a Pseudovibrio sp.	sự hiện diện của Pseudovibrio	
for cultivation 49	sp. trong quá trình nuôi cây 49	
3.2 The Pseudovibrio genus	3.2 Chi Pseudovibrio chứa vi	
contains metabolically versatile	khuân trao đôi chât linh hoạt và	
and symbiotically interacting	tương tác cộng sinh 53	
bacteria 53		
Chapter 4 - Isolation and	Chương 4 – Phân lập và nuối cây	
cultivation of Pseudovibrio sp.	Pseudovibrio sp. và các vi khuẩn	
and other facultatively	ngheo dinh dưỡng không bắt	
oligotrophic bacteria 55	buộc khác 55	
4.1 Substrate use of	4.1 Sự sử dụng chất nên của	
Pseudovibrio sp. growing in	Pseudovibrio sp. tang trưởng	
extremely oligotrophic seawater	trong nước biến rất nghèo dinh	
573	dường	

4.2 Facultatively oligotrophic	4.2 Các vi khuẩn nghèo dinh	
bacteria isolated from the habitat	dưỡng không bắt buộc được	
of large sulfide-oxidizers 77	phân lập từ môi trường sống của	
	các tác nhân oxy hoá sunfua	
	mạnh 77	
Chapter 5 - Concluding remarks 88	Chương 5 - Kết luận 88	
Conclusions 98	Kết luận 98	
Outlook 99	Viễn cảnh 99	
References 101	Tài liệu tham khảo 101	
List of abbreviations 114	Danh mục chữ viết tắt 114	
Appendix 115	Phu luc 115	
Acknowledgements 145	Lời cảm ơn 145	
5	5	
Summary	Tóm tắt	
Summary	Tóm tắt	
The oceans cover large parts of	Các đại dương bao phủ phần lớn	
the earth's surface and play an	diện tích bề mặt trái đất và đóng	
important role in the cycling of	vai trò quan trọng trong chu trình	
elements. The large filamentous	của các nguyên tố. Vi khuẩn oxy	
sulfide-oxidizing bacteria are	hoá sunfua dạng sợi lớn có khả	
capable of forming huge	năng hình thành các thảm vi	
microbial mats at the oxic-	khuẩn lớn ở mặt phân cách oxy-	
anoxic interface of the sediment	thiếu ôxy của bề mặt trầm tích, ở	
surface, where they oxidize	đó, chúng oxy hoá sunfua dùng	
sulfide using either oxygen or	oxy hoặc nitrat như chất nhận	
nitrate as electron acceptor.	điện tử. Do đó, chúng có tác	
Thereby, they can strongly	động mạnh mẽ và kết nối các	
influence and connect the	chu trình dưỡng chất khác nhau.	
different nutrient cycles. The	Cột nước bên trên là nơi cư trú	
water column above is populated	của vi khuẩn phù du, chúng	
by planktonic bacteria, which	chiếm phần lớn sinh khối trên	
account for a large fraction of	trái đất. Do đó, những sinh vật	
biomass on earth. Consequently,	này cũng ảnh hưởng mạnh mẽ	
these organisms also strongly	đến sự luân chuyển dưỡng chất	
influence the turnover of	trong các đại dương.	
nutrients in the oceans.		
The first part of this thesis	Phần thứ nhất của luận văn này	
(Chapter 2) addresses the	(Chương 2) đề cập đến đặc tính	
physiology and mat formation	sinh lý học và các quá trình hình	

processes of the large sulfideoxidizers belonging to the genus Beggiatoa. Until now, it was assumed that nitrate as an alternative electron acceptor is crucial for the migration of marine Beggiatoa spp. into deeper anoxic sediment layers. We found that a subpopulation of the investigated Beggiatoa filaments actively migrates into anoxic, sulfidic layers as a reaction to high sulfide fluxes without the presence of nitrate. Our experiments show that the reason for this so far unknown migration behavior seems to be excessive storage of elemental sulfur and organic carbon due to high sulfide fluxes, which leads to filaments extremely filled with storage compounds that tend to break easily at this stage. By moving into anoxic regions, aerobic sulfide oxidation is stopped and storage space is emptied by reducing the stored sulfur with carbon reserve compounds.

The investigated sulfide-oxidizer (Beggiatoa sp.) depends on the presence of a small heterotrophic bacterium (Pseudovibrio sp.). This association is investigated in the second part of this thesis (Chapter 3). The Pseudovibrio associated sp. mainly populates the oxic part of | hợp chủ yếu sống trong phần có

thành thảm của các tác nhân oxy sunfua lớn thuộc hoá chi Beggiatoa. Đến nay, người ta giả sử rằng nitrat là một chất nhận electron khác rất quan trọng cho sự di cư của Beggiatoa spp. biển vào các lớp trầm tích thiếu oxy sâu hơn. Chúng tôi thấy rằng môt quần thể sơi Beggiatoa đang nghiên cứu di cư vào các lớp sunfua, thiếu oxy như một phản ứng với các luồng sunfua cao mà không cần nitrat.

Thí nghiệm của chúng tôi cho thấy rằng nguyên nhân của việc này xuất phát từ các hành vi di cư chưa được biết đến hiện nay có vẻ là một nguồn dự trữ quá nhiều lưu huỳnh nguyên tố và cacbon hữu cơ do luồng sunfua cao, dẫn đến các sơi được nap đầy với các hợp chất dư trữ có khuynh hướng vỡ dễ dàng ở giai đoan này. Khi di chuyển vào các vùng thiếu oxy, quá trình oxy hoá sunfua hiểu khí dừng lai và không gian lưu trữ được dọn sach do sự khử lưu huỳnh dự trữ với các hợp chất lưu trữ các bon.

Các tác nhân oxy hoá sunfua đang nghiên cứu (Beggiatoa sp.) phụ thuộc vào sự hiện diện của môt loai vi khuẩn di dưỡng nhỏ (Pseudovibrio sp.). Chúng tôi nghiên cứu sự kết hợp này trong phần thứ hai của luân án này (Chương 3). Pseudovibrio sp. kết

the gradient co-culture. This	oxy của môi trường nuôi cấy hai
suggests that these bacteria are	chất gradient. Điều này cho thấy
mainly required for the oxic	rằng những vi khuẩn này cần
growth of the Beggiatoa sp. and	thiết cho sự tăng trưởng có oxy
might protect them from	của Beggiatoa sp. và có thể bảo
oxidative stress, as Beggiatoa	vệ chúng khỏi stress oxy hoá
spp. are typically known to lack	(tình trạng kích phản ứng oxy
the gene encoding for the	hoá), vì Beggiatoa spp. thường
enzyme catalase. Supporting this	được xem là thiếu các gen mã
hypothesis, we found that the	hóa enzyme catalase. Ủng hộ giả
genome of the accompanying	thuyết này, chúng tôi thấy rằng
Pseudivibrio sp. possesses	bộ gen của Pseudivibrio sp. đi
several genes for enzymes	kèm có một vài gen cho các
involved in the protection	enzyme tham gia vào quá trình
against reactive oxygen species.	bảo vệ chống lại các gốc oxy hoá
	hoạt động
In contrast to the large Beggiatoa	Trái với Beggiatoa sp. lớn,
sp., the associated Pseudovibrio	Pseudovibrio sp. liên kết có thể
sp. is able to grow in pure	phát triển trong môi trường nuôi
culture. Besides heterotrophic	cấy thuần. Bên cạnh quá trình
growth on organic-rich media,	tăng trưởng di dưỡng trên môi
the bacteria are also able to grow	trường giàu hữu cơ, vi khuẩn
under extremely oligotrophic	cũng có thể phát triển trong điều
(nutrient-poor) conditions. A	kiện cực kỳ oligotrophic (nghèo
detailed analysis of the substrate	dinh dưỡng). Phân tích chi tiết
use under oligotrophic	vê việc sử dụng chất nền trong
conditions revealed that	điệu kiện nghèo dinh dưỡng cho
Pseudovibrio sp. grows on	thây răng Pseudovibrio sp. phát
organic contaminations	triên trên các chất nhiễm bấn hữu
preferentially containing	co chứa nhiêu nito (Chương 4).
nitrogen (Chapter 4).	Điêu thú vị là, chúng ta có thể
Interestingly, we could isolate	phân lập thêm các vi khuẩn
further facultatively oligotrophic	nghèo dinh dưỡng không bắt
bacteria from water overlaying	buộc từ trấm tích ở Namibia
Namibian sediments, which are	trong nước, từng là nơi sinh sống
known to inhabit many different	của nhiêu tác nhân oxy hoá
large sulfide-oxidizers.	sunfua lớn khác nhau.
"Science is built up of facts, as a	Khoa học được xây dựng từ các
house is built of stones; but an	sự kiện; nhưng nó không đơn
accumulation of facts is no more	thuân là sự tích luỹ các sự kiện

a science than a heap of stones is a house."

Chapter 1 General introduction Marine element cycles

Nutrients are chemical compounds that are required for the metabolism of living organisms and have to be taken up from the environment. Bacterial nutrition includes both organic and inorganic molecules. The turnover of the individual elements in these nutrients is referred to as 'element cycling'. The marine carbon cycle Carbon is the major element of

cellular material (Battley, 1995). In the model organism Escherichia coli, for instance, the of cellular carbon amount accounts for 48 to 59% of the weight (Battley, 1995: drv Norland et al., 1995). The organic production of new material, also referred to as primary production, takes place the ocean mainly in via photosynthesis. In this process, Cacbon điôxít from the atmosphere is fixed to form new organic matter (Figure 1.1) using the energy from sunlight. Primary production is the main dissolved organic source of carbon (DOC) in the open ocean, which occurs within the euphotic zone (Hansell et al., 2009). An additional source of DOC is terrestrial organic carbon that is

cũng giống như một đóng gạch chưa hẳn là một ngôi nhà.

transported into the ocean by rivers and serves likewise as a fixed carbon source for marine microorganisms (Schlunz and Schneider, 2000), but accounts for only a minor fraction. The rate of primary production in the ocean surface waters generally controls the flux of organic matter towards the sediment (Suess, 1980; J0rgensen, 1983). Sinking to the bottom of the ocean, the fixed organic material is degraded and transformed by microorganisms and chemical processes.

Figure 1.1: The oceanic carbon cycle. Cacbon điôxít from the atmosphere is fixed into organic carbon which can sink down to the seafloor particulate as organic matter (POM). The labile dissolved organic matter (LDOM) can be respired to CO2 and the recalcitrant dissolved organic matter (RDOM) is inert to bacterial breakdown. (Image redrawn from Jiao et al., 2010 and references therein)

The organic matter in the ocean

can be divided in particulate organic matter (POM) and dissolved organic matter (DOM). Part of the POM pool sinks down to the seafloor where it can be stored for long periods of time (Figure 1.1, Ducklow et al., 2001). The DOM pool consists of labile dissolved organic matter (LDOM) and recalcitrant dissolved organic matter (RDOM). The LDOM fraction can partly be transformed by microorganisms, thereby, oxidized LDOM is bv heterotrophic microorganisms forming within days again Cacbon điôxít. Molecules like acids amino and monosaccharides as part of the LDOM fraction can easily be utilized by the marine bacterioplankton (Bauer et al., 1992; Cherrier et al., 1996; Kirchman et al., 2001) and make up 75% of the DOC that is consumed by marine microorganisms in the upper layers of the ocean (Cherrier and Bauer, 2004). The RDOM, on the other hand, is assumed to be resistant to biological degradation and can be stored in the ocean for millennia (Figure 1.1, Bauer et al., 1992; Kirchman et al., 2001; Hopkinson and Vallino, 2005; Jiao et al., 2010). The composition of dissolved organic matter in the ocean is highly diverse and DOM can

consist of thousands of different organic compounds of which only few (<10%) have yet been identified with specific molecular formulas (Koch et al., 2005; Hertkorn et al., 2006; Dittmar and Paeng, 2009).

The marine sulfur cycle Sulfur makes up only about 1% of the cellular dry weight (Battley, 1995), however, it is essential for the formation of (cysteine, amino acids methionine) and vitamins (biotine). In most marine environments, sulfur is not a limiting factor due to the high sulfate concentration of 28 mmol L-1 in seawater (Volkov and Rozanov, 1983). In the marine environment, sulfur can be found in varying oxidation states ranging between [-2] and [+6] (Figure 1.2). The potential to transform between the different oxidation states represents the importance of this element as it can serve as an electron donor or acceptor in various key redox reactions.

Figure 1.2: Different oxidation states of the element sulfur ranging from [+6] to [-2]. (Image

adapted from Chameides and Perdue, 1997)

In marine sediments, alternative electron acceptors, like sulfate, are present below the oxygen penetration depth. In anoxic layers, sulfate is used by microorganisms to oxidize organic and inorganic electron donors while reducing sulfate to sulfide. In coastal marine sediment from Aarhus Bay (Denmark) sulfate reduction takes place below 4 cm depth, which was concluded from hydrogensulfide (H2S) production (J0rgensen and Nelson, 2004). These anoxic sediment layers are, therefore, characterized by an upwards directed sulfide fulx. When sulfide reaches the oxic-anoxic interface and reacts with oxygen it gets oxidized back to sulfur or sulfate either chemically or The biological biologically. oxidation mediated by bacteria, for example of the genus Beggiatoa, was shown to be three times faster than the chemical oxidation (Nelson et al., 1986a). Due to the formation of large bacterial mats in certain habitats, the sulfide-oxidizing bacteria Beggiatoa spp. have a huge potential to oxidize large amounts of the upwards diffusing sulfide in these areas (JOrgensen, 1977), thereby strongly influencing the marine

sulfur cycle.

The marine nitrogen cycle Nitrogen, as a component of proteins and nucleic acids, is a fundamental molecule of life and cellular material consists to about 15% of nitrogen (Battley, 1995). The major nitrogen reservoir is the atmosphere, consisting of 78% nitrogen in the form of N2 gas (Fiadeiro, 1983). Only few microorganisms have the ability to fix the atmospheric N2 and make it available also for organisms. Nitrogen other fixation is an energy consuming process since N2 is triplebonded and has to be cleaved during the fixation process. Thereby, nitrogen gets reduced and is present in organisms in the most reduced form, the particulate organic nitrogen (PON, Figure 1.3). The PON can be remineralized ammonia. to Nitrifying microorganisms are oxidize able to ammonia aerobically to nitrate over nitrite, which is a process mediated by metabolically different two groups of bacteria. The formed nitrate can be used as electon in anaerobic acceptor environments (Figure 1.3), for example by the large sulfur bacteria of the genus Beggiatoa. Thereby, nitrate is reduced back to ammonia (dissimilatory nitrate reduction to ammonia = DNRA)

or to gaseous nitrogen compounds (denitrification).

Denitrification removes fixed nitrogen from the system, because the gaseous end-product N2 needs to be fixed again by to make microorganisms it biologically available. Besides denitrification, fixed nitrogen can also be removed from the system by anaerobic ammonium oxidation (anammox). During ammonia this process, is anaerobically oxidized to N2 using nitrite as electron acceptor (Strous et al., 1999).

Figure 1.3: The marine nitrogen cycle. from Nitrogen the atmosphere is fixed into particulate organic nitrogen (PON) which be can remineralized ammonia. to Ammonia can be either oxidized aerobically to nitrate or anaerobically with nitrite (anammox) producing N2 and removing fixed nitrogen from the system. Nitrate can also be reduced to gaseous nitrogen compounds (denitrification) that leave the system. (Image based in part on Arrigo, 2005; and is reproduced from Francis et al., 2007)

Connection of marine element cycles

The cycling of the elements ranges from the turnover of single molecules to entire

pathways occurring in living cells, thereby connecting all element cycles. The element cycling of individual cells does eventually influence the entire ecosystem on a broad scale (Bolin et al.. 1983). Microorganisms are composed of many different elements, such as carbon, nitrogen, sulfur, phosphorus, oxygen, hydrogen and many microelements like iron or magnesium (Battley, 1995). As a consequence, the production new or decomposition of biomass will automatically connect the different element cycles.

The marine element cycles are, furthermore, connected by the diverse metabolisms of bacteria. Redox reactions always combine the reduction of an electron acceptor with the oxidation of an electron donor. In nearly all cases, electron acceptor and donor are composed of different elements. Denitrification, which is the reduction of nitrate (NO3-) to molecular nitrogen (N2, Ncycle), for example can be coupled to the oxidation of organic carbon compounds (Ccycle) or the oxidation of reduced inorganic sulfur compounds (S-cycle). Additionally, both organic carbon and inorganic reduced sulfur compounds can also be oxidized using oxygen (O-cycle)

as an electron acceptor. This is only an excerpt of many metabolic pathways connecting the cycling of the single elements, including different electron donors (e.g. sulfide, hydrogen, organic material) and electron acceptors (e.g. oxygen, nitrate, sulfate).

In marine habitats, the mineralization of organic matter, such as dead organic material consisting of many different elements, is an important process combining nutrient cycles. In pelagic regions, this mainly occurs in the water column by the metabolic activity of freeliving bacteria (Azam and Hodson. 1977: Tabor and Neihof, 1982; Ishida et al., 1989). There, nutrient hotspots exist. such as marine snow particles that contain high amounts of organic matter. Bacteria densely aggregate on these particles (e.g. Smith et al., 1992; Azam and Malfatti, 2007 and references therein) and can achieve high growth rates (e.g. Alldredge et al., 1986; Ki0rboe and Jackson, 2001). In contrast, organic matter remineralization in shallow waters, such as fjords or continental shelfs. takes mainly place in the sediment. Thus, depending on the water depth, these are the substantial regions for nutrient cycling in the marine environment

(J0rgensen, 1983).

The connection of nutrient cycles in marine sediments (reviewed in JOrgensen, 1983) involves cascade a of transformation processes. Aerobic degradation of organic material in shallow marine sediments takes place within a thin layer at the sediment surface, where the oxidation of organic matter to Cacbon điôxít occurs. Below this oxic zone, anaerobic processes take place that successively oxidize the residual organic matter via different metabolic pathways by diverse microorganisms. From the top sediment layers to the deeper regions, the electron acceptor used is determined by its energy yield per mole carbon being oxidized. From top to bottom, the preferred electron acceptor gradually decreasing from oxygen to Cacbon điôxít via nitrate, iron, manganese and sulfate, combining the C-cycle to the N-, Fe-, Mn- and S-cycle (JOrgensen, 1983). Most importantly in the anoxic regions therefore. highly are. the abundant inorganic nitrogen and sulfur compounds, which are concomitantly reduced to N2 and H2S. Reduced substances, such as sulfide and methane that are

produced in deep sediment layers diffuse upwards and become oxidized to form sulfate and Cacbon điôxít, thereby closing the cycling of elements (J0rgensen, 1983).

Sulfide-oxidizing bacteria of the genus Beggiatoa

More than two centuries ago, bacteria of the genus Beggiatoa were discovered (Vaucher, 1803). They were originally described as Oscillatoria alba because they feature a similar filamentous morphology as the cyanobacteria of the genus Oscillatoria, but have a whitish appearance instead of the bluegreen pigments (Figure 1.4). About 40 years later, these colorless sulfur bacteria were reclassified as Beggiatoa alba, named after the Italian scientist F. S. Beggiato (Trevisan, 1842). Based on their morphology, different filamentous sulfur bacteria were assigned to the genus Beggiatoa. Several species were differentiated on the basis of filament diameter size classes ranging between 1-55 lim (Vaucher, 1803; Trevisan, 1842; Hinze. 1901: Klas. 1937). However, only a small number of 16S rDNA sequences were available until recently, which made it difficult to phylogenetically classify the large sulfur bacteria. It was even found that filaments with a

similar morphology belong to genetically phylodifferent genera (Ahmad et al., 1999; Ahmad et al., 2006). In a singlecell 16S rDNA gene sequencing approach of large sulfur bacteria, Salman et al. (2011) strongly extended the amount of available sequences and proposed based on phylogenetic analysis new candidatus genera names for the members of the family Beggiatoaceae. According to this reclassification, the genus Beggiatoa contains aerobic or microaerophilic filamentous bacteria with a diameter of 1-9 im.

Figure 1.4: Bright field micrographs of filamentous bacteria of the genera (A) Oscillatoria and (B) Beggiatoa from a freshwater enrichment culture. (Image reproduced from Bondarev, 2007)

Mat-formation and physiology of Beggiatoa spp.

Filaments of the genus can be Beggiatoa several centimeters long and move by gliding. Pores on the surface of Beggiatoa filaments are arranged as spirals and are assumed to be involved in the gliding motility by the excretion of slime (Larkin and Henk, 1996). This spatial flexibility allows the Beggiatoa filaments to position themselves in the chemical microenvironment of sediments.

As a consequence, Beggiatoa are able to form mats in different habitats, such as sulfidic marine and freshwater sediments (Winogradsky, 1887; J0rgensen, 1977; Nelson and Castenholz, 1982; McHatton et al., 1996), activated sludge (Farquhar and Boyle, 1971), hot vents (Nelson et al., 1989), cold seeps (Barry et al., 1996) and in hypersaline lakes (Hinck et al., 2007).

Beggiatoa filaments usually form a distinct mat in the transition zone of oxygen and sulfide (Winogradsky, 1887; Keil, 1912; JOrgensen, 1977). Beggiatoa spp. oxidize the upwards diffusing sulfide, via elemental sulfur to sulfate using oxygen as electron acceptor (Winogradsky, 1887; Nelson and Castenholz, 1981). The consumption of oxygen and sulfide by the bacteria steepens the gradients of oxygen and sulfide and narrows the transition zone to few а micrometer (Figure 1.5, Nelson et al., 1986a).

Figure 1.5: H2S and **O**2 microprofiles (A) in an uninoculated control medium and (B) an inoculated Beggiatoa culture. In the uninoculated medium, O2 and H2S gradients overlap, whereas in the culture the bacteria form a mat between the opposing gradients (shaded area) and steepen the gradients

by aerobic sulfide oxidation and raise the overlapping zone to 2.5 mm. (Image reproduced from Nelson et al., 1986a)

Simulating the natural habitat of the Beggiatoa, agar-based oxygen-sulfide gradient media are used to cultivate these large sulfide-oxidizers (Nelson et al., 1982; Nelson and Jannasch, 1983). The formation of a distinct mat of Beggiatoa filaments between their electron acceptor and donor depends on different parameters. Besides the fact that both oxygen and sulfide are essential for the growth of the bacteria, each of these substances is also toxic if present higher concentrations. in Exceeding 5% air saturation, oxygen induces a phobic reaction of Beggiatoa filaments (M0ller et al., 1985). In contrast, long-lasting depletion of oxygen causes filaments to move into the direction of the oxygen source (Winogradsky, 1887; M0ller et al., 1985). The concentration of oxygen, therefore, defines the upper border of the Beggiatoa mat. The lower border of the Beggiatoa layer is defined by the sulfide flux from below. With increasing sulfide flux the Beggiatoa filaments position themselves at higher layers in the

agar-based gradient culture tubes Nelson (Figure 1.6, and Jannasch, 1983) and if sulfide exceeds a critical concentration, the filaments die (Winogradsky, 1887). Additionally, a phobic reaction of Beggiatoa filaments towards light was observed and thus light might also influence the gliding direction and consequently the position of the Beggiatoa mat (Winogradsky, 1887; Nelson and Castenholz, 1982; M0ller et al., 1985).

Figure 1.6: Position of Beggiatoa cell layers (mats) in culture tubes with different sulfide concentrations in the bottom agar plug. With in-creasing sulfide, the filaments form a mat located higher in the culture tube. (Image reproduced from Nelson and Jannasch, 1983)

[NogS] in agar plug (mM

Elemental sulfur, which is the intermediate of sulfide oxidation. can be stored inside the Beggiatoa cells (Winogradsky, 1887) and leads to the whitish appearance of the filaments. Using electron microscopy, it was shown that the sulfur the cells globules in are surrounded by the cytoplasmic membrane and are located in the periplasm (Figure 1.7 A, Strohl et al., 1982). The intracellular sulfur can serve as an electron donor and be further oxidized to sulfate when sulfide gets limited

the environment in (Winogradsky, 1887). In addition to the storage of sulfur, Beggiatoa have the ability to store polyhydroxyalkanoates sometimes specifically (PHA. denoted poly-Pas hydroxybutyric acid [PHB]) in the cytoplasm of the cell (Figure 1.7 A, Pringsheim, 1964; Strohl and Larkin, 1978; Strohl et al., 1982). The amount of PHA in the cell can account for up to 50% of the dry weight of the cell (Gude et al., 1981). Furthermore, accumulation an of polyphosphate in Beggiatoa cells was shown by transmission microscopy electron and different staining methods 1.7 C. Maier (Figure and Murray, 1965; Strohl and Larkin, 1978; de Albuquerque et al., 2010; Brock and Schulz-Vogt, 2011).

About two decades ago, extremely large marine filamentous sulfur bacteria (116-122 lim in diameter) containing a central vacuole were found and identified as Beggiatoa spp. based morphological on similarities to these organisms (Figure 1.7 B, Nelson et al., 1989). Few years later, the storage of nitrate, an alternative electron acceptor, was detected within the vacuoles of these large filaments (McHatton et al., 1996). It was proposed that the

oxidation of sulfide can be either DNRA coupled to (Sayama, 2001; Sayama et al., 2005) or denitrification (Sweerts et al., 1990). The storage of nitrate allows the filaments to inhabit deeper anoxic sediment layers. Carrying nitrate down into anoxic sediment layers and use it for sulfide oxidation can lead to the separation of oxygen and sulfide gradients over several centimeters (MuBmann et al., 2003; Sayama et al., 2005; Kamp et al., 2006).

This life strategy enables large, vacuolated sulfur bacteria like Beggiatoa spp. to outcompete non-vacuolated. non-motile sulfide-oxidizers in anaerobic environments. Close relatives of Beggiatoa. like bacteria belonging to the candidate genus "candidatus Marithioploca", also use and store nitrate and even show a positive chemotactic response towards nitrate (Huettel et al., 1996; reclassified by Salman et al., 2011).

Thus, the orientation and mat formation of the vacuolated nitrate- storing sulfur bacteria may also be influenced by the nitrate flux. Studying the physiology of Beggiatoa, Winogradsky (1887)

developed the concept of chemolithotrophy. He observed

that the growth of Beggiatoa was dependent on reduced inorganic sulfur compounds but not on the presence of organic compounds. The utilization of CO2 as a sole carbon source was later confirmed by isotope-labeling studies (Nelson and Jannasch, 1983). Besides these chemolithoautotrophic strains. chemoorganoheteromany trophic Beggiatoa strains were isolated (Strohl and Larkin, 1978; Gude et al., 1981; Strohl et al., 1981), which are able to oxidize sulfide only in the presence of organic compounds. Furthermore, also mixotrophic Beggiatoa strains were isolated (Pringsheim, 1967; Gude et al., 1981) thus reflecting the diverse metabolisms present within the genus Beggiatoa.

Figure 1.7: Cell structures of Beggiatoa filaments. (A) Schematic representation of Beggiatoa alba strain B15LD indicating the location of sulfur globules [S] in the periplasm and poly-P-hydroxybutyrate [PHB] in the cytoplasm. **(B)** Transmission electron micrograph of a Beggiatoa sp. cross section. The cytoplasm of this large Beggiatoa filament is restricted to the edge of the cell and the interior mainly consists of a large central vacuole. (C)

Transmission electron micrograph showing electrondense inclusion bodies in the cytoplasm of Beggiatoa filaments probably consisting of polyphosphate [P]. (Images adapted and reproduced from Strohl et al., 1982 [A]; Nelson et al., 1989 [B]; de Albuquerque et al., 2010 [C]) The investigated Beggiatoa sp.

The investigated Beggiatoa sp. co-culture

The marine Beggiatoa sp. strain 35Flor investigated in this thesis was isolated in 2002 from a microbial community associated scleractinian with corals suffering from black band disease off the coast of Florida. This Beggiatoa sp. strain grows chemolithoautotrophic under conditions in an agar-stabilized oxygen-sulfide gradient medium gaining energy from the aerobic oxidation of sulfide. Both, a fixed carbon and a fixed nitrogen source are absent from the medium and nitrogen fixation in the investigated Beggiatoa sp. was determined earlier (Henze, 2005). Typical storage of compounds the genus Beggiatoa, such as sulfur, PHA and polyphosphate were found in the investigated filaments unpublished (Schwedt, data. Brock and Schulz-Vogt, 2011). A central vacuole is present (Kamp et al., 2008; Brock and

Schulz- Vogt, 2011), but the storage of nitrate could not be detected (Schwedt et al., unpublished data).

The Beggiatoa sp. strain 35Flor is accompanied by only one type of organism (Bachmann, 2007), the Pseudovibrio sp. strain FO-BEG1. Unlike the Beggiatoa sp., the associated bacteria are able to grow in pure culture and could be isolated in artificial seawater medium. The investigated Pseudovibrio sp. is able to grow artificial seawater in pure medium under extreme nutrientpoor conditions (Bachmann, 2007) and thus belongs to the few so far cultured extremely oligotrophic organisms.

Bacterial growth under nutrient deficiency

term 'oligotroph' The was introduced by Weber (1907) to describe an organism growing under nutrient deficiency as opposed to that, bacteria growing under nutrient affluence are called 'eutrophs' (organisms living in nutrient-rich environments are sometimes also referred to as 'copiotrophs'). Over time, several definitions of oligotrophy arose and today it is generally accepted that bacteria are referred to as oligotrophic

when they are able to grow in medium containing less than 0.5 mg C L-1 (e.g. Ishida et al., 1989). When their growth is high substrate inhibited by concentrations, the bacteria are considered to be obligately oligotrophic, which is in contrast facultatively oligotrophic to bacteria, which are able to grow under both nutrient-poor and nutrient-rich conditions (Ishida et al., 1989). Facultative oligotrophs are. therefore. successful in environments with changing nutrient conditions.

The open ocean, covering large parts of the earth's surface, is low in nutrients and contains less than 1 mg DOC in 1 L seawater (Schut et al., 1997; Hansell et al., 2009). Thus, it is denoted as an oligotrophic environment. 75% of the carbon consumed by the bacteria in the ocean can be composed of dissolved free amino acids (DFAA), dissolved combined amino acids (DCAA) and monosaccharides. The utilization of these substances can cover 5 to 93% of the carbon demand of the bacteria and 9 to 100% of the nitrogen demand (Fuhrman, 1987; JOrgensen, 1987; Stanley et al., 1987; Keil and Kirchman, 1999; Cherrier and Bauer, 2004). Attached and free-living marine

bacteria The particulate organic matter (POM) is an important part of the organic matter in the ocean. Particles larger than half a millimeter are so-called marine snow particles (Suzuki and Kato, 1953: Silver et al.. 1978). Besides the larger marine snow particles, there are also smaller microaggregates (Figure 1.8 A and B) and both consist of detrital organic and inorganic matter (Azam and Long, 2001), thereby representing hotspots of high nutrient concentration. The aggregates can be colonized by metazoans (e.g. Shanks Edmondson. 1990: Ki0rboe. 2000), protozoans (e. g. Silver et al., 1978) and prokaryotes (e. g. Alldredge et al., 1986; Smith et al., 1992; Azam and Malfatti, 2007 and references therein). whereas only the latter was found on all types of aggregates studied so far. Extracellular hydrolytic enzymes produced by aggregate-associated bacteria can convert the POM of the sinking aggregates into biomass and non-sinking

dissolved organic matter (DOM) (Smith et al., 1992; Grossart et al., 2007). While sinking down the particles leave behind a DOM plume that is composed mainly of carbon and nitrogen. The DOM plume is colonized by some of the attached bacteria but

and

cell

also by free-living bacteria from the surrounding water (Figure 1.8 C, Azam and Long, 2001; Ki0rboe and Jackson, 2001).

Compared to the surrounding water, bacterial cell densities on aggregates are typically >100 times higher (e. g. Smith et al., 1992; Turley and Mackie, 1994). Nevertheless. the particleassociated bacteria account only for <5% of the total bacterial in numbers seawater (e.g. Alldredge et al., 1986; Alldredge and Gotschalk, 1990; Turley and Stutt, 2000) and contribute to only 3 to 12% of the total bacterial production (Alldredge et al., 1986; Turley and Stutt, 2000). Even though the total activity is low, the per cell activity of the attached bacteria is higher compared to free-living bacteria, as demonstrated by higher incorporation rates and shorter doubling times (Alldredge et al.. 1986; Alldredge and Gotschalk, 1990; Smith et al., 1992; Azam and 2001: Ki0rboe Long. and Jackson. 2001). Furthermore, some studies have shown that the free-living bacteria may either starve and not be active (Boylen and Ensign, 1970; Novitsky and Morita, 1976; 1977), while other studies show that they may be

metabolically active (Azam and Hodson, 1977; Tabor and Neihof, 1982; Ishida et al., 1989).

Figure 1.8: In situ photographs of (A) a marine snow aggregate in a pelagic environment and (B) micro-aggregates in a shallow environment (photos M. Lunau). (C) Scheme of a marine snow particle colonized by bacteria which excrete hydrolytic enzymes converting marine snow into DOM forming a behind the sinking plume aggregate that is also colonized and free-living by attached bacteria. The DOM consists mainly of carbon [C] and nitrogen [N]. (Images adapted and redrawn from Azam and Long, 2001 [C]; and reproduced from Simon et al., 2002 [A and **B**])

The majority of the free-living bacteria in the open ocean is exposed to extremely low nutrient concentrations and many different survival strategies have evolved to cope with this nutrient limitation. These strategies include concentrationindependent enzyme production (cells are considered to be prepared and have enzymes ready for substrates becoming available). derepression of substrates (the use of one substrate is not repressed by another more efficient one) and

the use of multiple substrates simultaneously (use different substrates at the same time, independent of their efficiency) and (Egli, 2010 references therein). Substrate tests on organisms grown under carbon limitation revealed that these cells can oxidize a much broader spectrum of organic compounds than cells that were pre-grown under carbon excess (Upton and Nedwell, 1989; Ihssen and Egli, 2005). The use of multiple carbon sources enables growth on extremely low concentrations of each individual compound (Lendenmann al., 1996; et Kovárová-Kovar and Egli, 1998) and is thus beneficial in an oligotrophic environment with a frequently changing supply of nutrients.

Cultivation of marine bacteria So far, only about half of the known bacterial phyla have cultivable representatives (Hugenholtz, 2002), even though pure cultures are essential to study metabolic pathways of the different bacteria in detail. Possible reasons for the yet inability to cultivate many bacteria maybe unsuited growth conditions and could include a lack of nutrients or growth factors, inappropriate pH, pressure or temperature conditions or unsuitable levels of

oxygen (reviewed in Vartoukian et al., 2010). Furthermore, many of the used media contain very nutrients, high amounts of compared most marine to environments, and thus favor fast-growing bacteria rather than slow-growing ones. In turn, such conditions might even inhibit the growth of some oligotrophic bacteria (Ishida et al., 1989: Koch. 1997; Connon and Giovannoni, 2002). Consequently, new strategies for the isolation of marine bacteria have be developed to to different understand the metabolic pathways of marine bacteria and their ecology and evolution (Grossart, 2010).

One approach to prevent overgrowth of slow-growing the dilution-tobacteria is extinction method, that reduces the number of cells per sample until ideally solely single cells are left for cultivation (e. g. Button et al., 1993; Connon and Giovannoni, 2002). Additionally, the use of low-nutrient natural seawater for isolation and in vitro simulation of the natural environment using diffusion in natural chambers placed seawater provoked isolation of new, so far uncultured bacteria (Connon and Giovannoni, 2002; Kaeberlein et al., 2002; Rappe et

al., 2002; Zengler et al., 2002; Bollmann et al., 2007).

the utilization However. of natural seawater always implies undefined conditions because merely a few percent of the highly diverse organic compounds in natural seawater is already characterized (Dittmar and Paeng, 2009). Hence, in study order to bacterial metabolism at the lower border of bacterial growth in detail and to identify the essential substances for growth, a defined artificial seawater medium is crucial. Those approaches so far reported to isolate and cultivate marine bacteria using artificial seawater contained either agar or vitamins. both of which represent a fixed carbon source, or were supplemented with at least 0.1 to 3 mg C L-1 of organic substrates to support growth (Van der Kooij et al., 1980; Ishida et al., 1982; Schut et al., 1993; Azam and Long, 2001; Vancanneyt etal., 2001).

Aims of this study

This work was initiated by the question of how marine Beggiatoa spp. form mats and succeed in anoxic habitats. Until today, it was believed that only

the presence of nitrate as alternative electron acceptor allows the population of anoxic environments by the large sulfide-oxidizing bacteria of the family Beggiatoaceae.

Recently, I found that nitrate is not essential for the thriving of Beggiatoa filaments in anoxic parts. For these experiments, I used the marine Beggiatoa sp. 35Flor that is cultivated in gradient culture tubes. It was observed that filaments moved below the oxygen-sulfide interface without the presence of nitrate and aggregated in anoxic of the culture tube. parts Therefore, the aim of the first part of this thesis (Chapter 2) was to study this behavior and to reveal how the filaments can survive in the anoxic layers and why they leave the overlapping zone of oxygen and sulfide, where both electron acceptor and donor are present.

Already during my diploma thesis (Bachmann, 2007) I was able to show that the investigated Beggiatoa culture is not a pure culture. Instead, the Beggiatoa sp. 35Flor is in co-culture with a single accompanying organism, Pseudovibrio sp. FO-BEG1. Accordingly, the second

objective of my PhD thesis (Chapter 3) was to examine whether the growth of the sulfide- oxidizer is dependent on the presence of the accompanying Pseudovibrio sp. and, if so, whether the Pseudovibrio denitrificans type strain (DSM number 17465) can also provoke growth of the Beggiatoa sp. 35Flor.

The accompanying Pseudovibrio sp. FO-BEG1 is able to grow in without pure culture the Beggiatoa sp. under extreme nutrient deficiency in artificial seawater medium (Bachmann, 2007). The physiology of the Pseudovibrio sp. should now be subject to а detailed physiological analysis. Despite omitting the addition of an source. DOC energy was detected in the range of 5 |imol C L-1 (0.06 mg C L-1), which is 1 to 2 orders of magnitude below natural oligotrophic seawater (Schut et al., 1997; Hansell et al., 2009). This contamination could have potentially been used as an energy source. To address this question, the third objective of this thesis (Chapter 4) was to analyze the artificial medium used for cultivation. before and after growth of the Pseudovibrio strain, in order to find out which compounds were used by the bacteria. Eventually, other heterotrophic bacterial strains

were isolated in the course of this thesis under nutrient limitation to estimate how ability common the among heterotrophic bacteria (associated with large sulfideoxidizers) is to grow under nutrient limitation.

Chapter 2 Physiology and mat formation of a marine Beggiatoa culture

This second chapter of my PhD thesis deals with the physiology of the large, sulfide- oxidizing Beggiatoa sp. strain 35Flor. The focus is laid on mat formation processes and was motivated by a new observation that filaments into deeper migrate anoxic regions without the presence of nitrate (Figure 2). In the first part of this chapter, the physiology behind the observed migration event is discussed in detail in form of a manuscript. The second part of this chapter deals with the inducibility of this migration process by blue/green light and the influence of chemical substances on the mat. This part of the chapter is presented in form of a short communication.

Figure 2: Image of marine Beggiatoa cultivated under chemolithotrophic conditions without nitrate at a high sulfide

flux (43.1 mmol m-2 d-1) after two weeks. A subpopulation of filaments migrated downwards into deeper layers. Contributions:

2.1 Sulfur respiration in a chemolithoautotrophic marine Beggiatoa strain A. Schwedt, The concept of the study was developed by me and H. N. Schulz-Vogt. All initial experiments were performed by me. The final experiments and data analysis were performed by me, A.-C. Kreutzmann and L. Polerecky. The manuscript was written together with A.-C. Kreutzmann and with the help of the other two co-authors.

2.2 Coordinated movement of Beggiatoa filaments in oxygen/sulfide gradients and the effect of blue/green light

The concept of the study was developed by H. N. Schulz-Vogt T. Hohmann. Major and experiments were performed by H. N. Schulz-Vogt and T. Hohmann with the help of L. Polerecky during data analysis. I assisted during migration experiments and filming and performed c-di-GMP experiments.

2.1 Sulfur respiration in a marine chemolithoautotrophicBeggiatoa strainAbstractThe chemolithoautotrophic strain

Beggiatoa sp. 35Flor shows an unusual migration behavior when cultivated in a gradient medium under high sulfide fluxes. As common for Beggiatoa spp., the filaments form a mat at the oxygen-sulfide interface. However, upon prolonged incubation. a subpopulation migrates actively downwards into the anoxic and sulfidic section of the medium. where the filaments become gradually depleted in their sulfur and polyhydroxyalkanoates (PHA) inclusions. This depletion is correlated with the production of hydrogen sulfide. The sulfur-PHA-depleted filaments and return to the oxygen-sulfide interface, where they switch back to depositing sulfur and PHA by aerobic sulfide oxidation. Based on these observations we conclude that internally stored elemental sulfur is respired at the expense of PHA under stored anoxic conditions. Until now, nitrate has always been assumed as the alternative electron acceptor in lithotrophic Beggiatoa spp. under anoxic conditions. As our medium and the filaments were free of oxidized nitrogen compounds we can exclude this metabolism. Furthermore, sulfur respiration with PHA under anoxic conditions has so far only been described for heterotrophic

Beggiatoa spp., but our medium did not contain accessible organic carbon. Hence the PHA inclusions must originate from atmospheric CO2 fixed by the filaments while at the oxygensulfide interface.

We propose that the directed migration of filaments into the anoxic section of an oxygensulfide gradient system is a to cell strategy preserve which integrity, could be compromised by excessive sulfur deposition occurring in the presence of oxygen and high sulfide fluxes. The regulating mechanism of this migration is hitherto unknown.

Introduction

The genus Beggiatoa comprises large, filamentous bacteria that inhabit diverse sulfidic environments, such as sediments (Winogradsky, 1887; JOrgensen, 1977; Nelson and Castenholz, 1982; McHatton et al., 1996), springs (Winogradsky, 1887; Macalady et al., 2006) and activated sludge (Farquhar and Boyle, 1971). The motile filaments typically aggregate in a narrow overlapping zone of opposed oxygen and sulfide diffusion gradients where they form a sharply bounded mat (Faust and Wolfe, 1961; Nelson and Jannasch, 1983; Nelson et al., 1986a).

Within this mat, Beggiatoa spp. oxidize sulfide with oxygen and deplete both compounds (Nelson et al., 1986a). This process is accompanied by deposition of elemental sulfur inside the filaments.

Several filamentous and nonfilamentous members of the Beggiatoaceae (Salman et al., 2011) are moreover capable of anaerobic sulfide oxidation with nitrate as an alternative electron acceptor (Fossing et al., 1995; McHatton et al., 1996; Schulz et al., 1999). Dissimilatory nitrate reduction enables these organisms to colonize anoxic environments such as deeper layers in sediments, microbial gradient cultures mats or (Sweerts et al., 1990; MuBmann et al., 2003; Sayama et al., 2005; Kamp et al., 2006; Hinck et al., Nitrate-based 2007). sulfide oxidation seems to have been of great importance for some members the of family Beggiatoaceae, as suggested by their ability to store nitrate within intracellular vacuoles at concentrations up to 104 fold higher than in the ambient water (Fossing et al., 1995; McHatton et al., 1996; Schulz et al., 1999; Sayama, 2001; MuBmann et al., 2003; Kalanetra et al., 2004; Kalanetra et al., 2005; Hinck et al., 2007).

However, also non-vacuolated strains were shown to use externally provided nitrate as a terminal electron acceptor (Sweerts et al., 1990; Kamp et al., 2006).

We cultivated the chemolithoautotrophic, marine strain Beggiatoa sp. 35Flor in an agar- stabilized oxygen-sulfide medium. gradient Upon prolonged incubation in the presence of medium to high sulfide fluxes, we observed an unusual migration behavior. subpopulation where a of filaments migrated downwards from the oxygen-sulfide interface. These filaments were able to survive although sulfide concentrations were high and terminal electron acceptors that are known to be utilized by Beggiatoa spp., i.e., oxygen and nitrate, were not detectable in medium nor filaments. In this study, we investigated the possibility of an alternative metabolism of Beggiatoa sp. 35Flor under anoxic. nitrate-free and sulfidic conditions, and discuss its possible ecological significance and link to the peculiar migration behavior.

Material and methods Strain and cultivation The strain Beggiatoa sp. 35Flor was originally enriched from a black band disease of scleractinian corals from the coast of Florida, and can so far only be cultivated in the presence of the Pseudovibrio denitrificans strain FO-BEG1 (Schwedt et al., unpublished). Filaments of the strain 35Flor are about 6 im wide, and the cells contain polyphosphate inclusions and a central vacuole filled with polyphosphate (Kamp et al., 2008; Brock and Schulz-Vogt,	Vật liệu và phương pháp Chủng và nuôi cấy Chủng Beggiatoa sp. 35Flor ban đầu được làm giàu từ một khu vực nhiễm bệnh sọc đen của các san hô scleractinian từ bờ biển Florida, và đến thời điểm hiện tại, chỉ có thể được nuôi cấy khi có chủng Pseudovibrio denitrificans FO-BEG1 (Schwedt và các cộng sự., Chưa xuất bản). Các sợi của chủng 35Flor rộng khoảng 6 im, và các tế bào chứa các thể vùi polyphosphate và một không bào trung tâm được nạp polyphosphate (Kamp và cộng	
2008; Brock and Schulz-Vogt,	polyphosphate (Kamp và cộng	
2011).	sự, 2008; Brock và Schulz-Vogt, 2011.). checked	

Cultivation was performed in tubes with an agar-based mineral gradient medium modified after Nelson et al. (1982) and Nelson and Jannasch (1983) using artificial seawater (Kamp et al., 2008). The medium was composed of a sulfidic bottom agar plug <u>(1.5% w/v ag</u>ar) covered with a sulfide-free, semisolid top agar layer (0.25%) w/v agar) of 5 cm height (Tables 2.1.1 and 2.1.2). The medium was prepared free of nitrate, nitrite and nitric oxide, as verified by measurements with an NOx analyzer (CLD 66, Eco Physics, Rosrath, Germany). Gas exchange between headspace and the atmosphere was possible, opposing gradients of and oxygen and sulfide were allowed to form for one day before inoculation. The cultures were inoculated about 1 cm below the air-agar interface using 100 |iL filament suspension from an Incubations established mat. performed were at room temperature in the dark.

điều chỉnh từ môi trường đưọ sử dụng bởi Quá trình ủ

During incubations, the distribution of filaments in the tube was measured simultaneously with the vertical profiles of H2S and pH.

biên dạng thẳng đứng ở các ống nuôi

anoxic Na2S stock solution was stepwise. The exact added sulfide concentration of the Na2S stock solution was determined by iodometric titration. Total sulfide (Stot) profiles were calculated from measured H2S and pH profiles using equation Stot = H2S X [1]+ K1 / H3O +], with pK1 = 6.569 at 21°C and 39%0 salinity (Millero et al., 1988). The oxygen sensor was two-point calibrated in calibration а chamber filled with artificial seawater. Signal readings were taken in water saturated with N2 and ambient air. Oxygen concentrations at the respective salinity and temperature were calculated according to Weiss (1970). The pH electrode was calibrated using buffer solutions of pH 4.01, pH 7.00, and pH 9.21 (Mettler-Toledo, Giessen, Germany). All sensors were calibrated immediately before the measurement. In case of long time series measurements the sensor calibration was checked afterwards and a possible drift was corrected for.

Vertical profiling in 250 |im steps was performed with sensors mounted on a motorized linear positioner (VT-80, Pollux motor, Micos, Eschbach, Germany) controlled by a computer using a software for

automated microsensor measurements (^-Profiler, L. Polerecky, http://www.microsen- wiki.net). The sensors were aligned by manually adjusting their tips to the air-agar interface using a dissecting microscope (Stemi 2000-C, Zeiss, Jena, Germany).	biến http://www.microsen-wiki.net canh chỉnh mũi của chúng	
Filament imaging The distribution of sulfur- containing Beggiatoa sp. 35Flor filaments in the gradient cultures was monitored using time-lapse photography. An amber light- emitting diode (LXHL-NM98, Luxeon, Philips, San Jose, CA, USA) was positioned below the culture tube and switched on for one second when an image was taken with a cooled CCD camera (Sensicam, PCO, Kelheim, Germany). Illumination and image acquisition in 10 min intervals were controlled by a computer using a custom-written program (Look@Molli, B. Grunwald, http://www.microsen- wiki.net).	kỹ thuật chụp ảnh tua nhanh thời gian nuôi cấy được viết tùy chỉnh	
Intensities of the recorded images were horizontally averaged over an area with visible filaments (~5 mm wide, ~2 cm high), and the resulting vertical profiles were assembled	http://www.microsen-wiki.net được lấy các biên dạng thẳng đứng	

into a 2D map with the x-axis representing incubation time and the y-axis corresponding to depth. Since the average image intensity was proportional to the density of sulfur globules, which were present exclusively inside filaments, vertical movement of sulfur-rich filaments was detected as a change in the shape of the vertical intensity profile.

In contrast, an increase and decrease in the profile intensity that was not accompanied with the change in the profile shape indicated accumulation and depletion of sulfur inside the filaments, respectively. Because this method relied on light scattering from sulfur inclusions, it did not allow visualization of sulfur-free filaments.

Staining of internal PHA

Staining with Nile Red was used to visualize PHA inclusions in the filaments. A subsample from the culture tube (volume 90 |iL) was incubated for 5 minutes with 10 |iL of a Nile Red (Sigma-Aldrich, Steinheim, Germany) staining solution (25 mg L-1 in dimethyl sulfoxide). The filament suspension was transferred onto a poly-L-lysine (Sigma-Aldrich) coated microscope slide for immobilization of the filaments. Fluorescence of Nile Red was

cuối cùng được gộp

các hạt chỉ hiện diện bêr rong các sợi

của biên dạng cường độ biên dạng biên dạng các nó không cho phép các sợi không lưu huỳnh hiển thị

excited with a laser at 546 nm and emission was recorded above 590 nm (filter set 15, Zeiss, Jena, Germany) using an epifluorescence microscope (Axiophot equipped with AxioCam MRm, Zeiss, Jena, Germany).

Transfer experiment with sulfurfree filaments

То verify that sulfur-free filaments from the anoxic subpopulation of an aged culture (cultivated at high sulfide flux conditions) were alive, able to migrate back to the oxygensulfide interface and re-establish their sulfide-oxidizing metabolism. thev were transferred into the anoxic a fresh gradient section of medium (cultivated at low sulfide flux conditions). All cultivation media were prepared in plexiglass tubes (2x12 cm in size) with lateral holes (Brock and Schulz-Vogt, 2011). Fresh medium for inoculation with sulfur-free filaments was preincubated with the Pseudovibrio accompanying strain. This was done to ensure a sufficient cell density of Pseudovibrio sp. irrespective of the inoculum as the Pseudovibrio sp. is required for growth of Beggiatoa sp. 35Flor, but its abundance is negligible in the anoxic part of the gradient

(Schwedt et al., unpublished). Subsequently, sulfur-free filaments were removed laterally from the aged culture and injected laterally into the fresh medium at a depth of about 1 cm below the oxygen-sulfide interface. Lateral removal ensured that no sulfurcontaining filaments from the oxygen-sulfide interface of the aged culture were transferred, whereas lateral injection prevented inoculation of the transferred sulfur-free filaments to the oxygen-sulfide interface of the fresh gradient media. The development of a mat at the oxygen- sulfide interface was inspected visually.

Results

Migration of Beggiatoa sp. 35Flor in gradient cultures

Beggiatoa sp. 35Flor filaments aggregated and formed a dense oxygen-sulfide mat the at interface within the gradient medium. In cultures with medium to high sulfide fluxes (Table 2.1.3 A) a subpopulation of filaments began a downward migration to the anoxic zone about 3-4 days after establishment of the mat. For medium sulfide fluxes, this migration resulted in a layer with a homogenous filament density extending up to 2-3 mm below

(Figure 2.1.1). mat the In contrast, for high sulfide fluxes the migrating filaments were not homogenously distributed, but progressively aggregated in a region distinctly separated from the mat at the oxygen-sulfide interface (Figure 2.1.1 and 2.1.2 B). Because the aggregation of filaments in the anoxic part increased the chance of detecting metabolic products all further experiments were conducted with cultures growing under a high sulfide flux.

Figure 2.1.1: Distribution of Beggiatoa sp. 35Flor filaments over depth in gradient cultures after 6 (open symbols) and 12 (closed symbols) days in the presence of different sulfide fluxes. The flux values represent theoretical maxima under the given cultivation conditions (Table 2.1.3 A).

Migration of filaments in cultures with a high sulfide flux followed a general pattern (Figure 2.1.2 E). During the initial 3-4 days of incubation, the at the oxygen-sulfide mat interface gradually formed. After about 6-7 days, the sulfur globule density in the mat decreased moderately, followed by a more pronounced decrease after 8-9 days. These decreases were correlated with two pronounced events of downward

migration at days 5-6 and 7-8, respectively (arrows 1 and 2 in Figure 2.1.2 E). After reaching a depth of around 10 mm, the migrating filaments formed a laver of increased filament density. These filaments slowly disappeared from view due to a gradual loss of their internal sulfur granules. The disappearance of filaments was accompanied by a parallel increase in the sulfur globule density in the mat at the oxygensulfide interface (arrow 3 in Figure 2.1.2 E), suggesting that the filaments returned to this zone and switched back to oxidation, sulfide thereby depositing sulfur. This was confirmed by the transfer experiment, which showed that sulfur-free filaments transferred from the anoxic subpopulation of an aged culture into the anoxic section of a fresh gradient medium formed, within 12 days, a new mat of sulfur-containing filaments at the oxygen-sulfide interface.

Table 2.1.3 A Diffusive sulfide fluxes in gradient cultures from this study. a The initial theoretical maximum of the sulfide flux in the gradient cultures, calculated using Fick's first law of diffusion (J = -D Ac/Ax). The diffusion coefficient D for HS-

was corrected for temperature (21°C) according to J0rgensen and Revsbech (1983), resulting in a value of 1.56 X 10-9 m2 s-1. The concentration gradient was calculated from the height of the top agar (Ax = 5 cm) and the initial sulfide concentration in the bottom agar, assuming that sulfide was depleted at the agar surface, i.e. Ac = c (Na2S). Table 2.1.3 B Diffusive sulfide

fluxes in natural Beggiatoa spp. mats.

Sulfide production by filaments in the anoxic section Throughout the incubation. sulfide oxidation in the mat at the oxygen-sulfide interface was bv confirmed pronounced acidification and steep gradients of total sulfide (Figure 2.1.2 C and D). A small but detectable peak in the H2S profile was observed at a depth of ~10 mm when the anoxic subpopulation was present (Figure 2.1.2 D). As pH varied only smoothly with depth in this region, the H2S peak was not linked to pH variation, but indicated a true production of sulfide at and around this depth. This production was strongly spatially and temporally correlated with the presence of the anoxic subpopulation (Figure 2.1.2 F), suggesting that it was linked to the metabolic activity of the

subpopulation. 2.1.2: Figure Relationship between the migration of Beggiatoa sp. 35Flor filaments and the dynamics of O2, pH, H2S and Stot in the gradient culture tube. (A-B) Images of culture tubes showing the filament distribution after 2 and 11 days, respectively. (C-D) Examples of pH, H2S and total sulfide profiles in the gradient culture incubated for 8 and 13 days. Shaded areas mark the oxic zone. (E) Average sulfur globule density as a function of time and depth, showing the dynamics of the filament distribution and their sulfur content. Arrows 1 and 2 indicate the onset of major downward migration events. arrow 3 indicates the onset of an increase in the filament density in the mat at the oxygen-sulfide interface. Although the timing of these events varied amongst experimental runs, the general pattern was reproducible. (F) H2S excess as a function of time and depth. calculated bv subtracting the measured H2S profile from the background trend. The trend was derived from the H2S concentrations measured above and below the peak (line indicated by arrow in panel D). Contour lines of the sulfur globule density from panel

from

this

filaments

E are overlaid. Data shown in panels A, B, E and F are from the same culture tube, profiles in panels C and D are from a parallel culture tube.	
Sulfur and PHA content in single filaments Beggiatoa sp. strain 35Flor filaments accumulated elemental sulfur and PHA during growth at the oxic-anoxic interface. Sulfur inclusions were visible as dark, highly refractory globules in bright-field micrographs, while PHA inclusions appeared as strongly fluorescent globules in the images of Nile Red stained samples (Figure 2.1.3).	
When grown under high sulfide fluxes, most filaments from the mat at the oxygen-sulfide interface were densely filled with sulfur and PHA inclusions (Figure 2.1.3 B and 2.1.3 E). With increasing sulfide fluxes the amount of internal sulfur strongly increased (compare Figure 2.1.3 A and 2.1.3 B), whereas PHA inclusions were equally abundant in all treatments (data not shown). In contrast, filaments from the anoxic subpopulation were heterogeneous with respect to their inclusion density; while	

sulfur and PHA, others lacked both (Figure 2.1.3 D and 2.1.3 F). At high sulfide fluxes, frequently filaments were observed to burst, particularly in older cultures (Figure 2.1.3 C). Figure 2.1.3: Bright-field and fluorescence micrographs illustrating the typical appearance of Beggiatoa sp. 35Flor filaments cultivated under different conditions. (A-B)Filaments from the mat at the oxygen-sulfide interface of 6 days old cultures growing under low (A) and high (B) sulfide flux conditions. (C-D) Filaments from cultures grown under high sulfide flux conditions, collected from the mat at the oxygensulfide interface after 27 days (C) and from the anoxic subpopulation after 12 days (D). (E-F) Nile Red-stained filaments from a 14 days old culture, collected from the mat at the oxygen-sulfide interface (E) and from the anoxic subpopulation (F). Bright fluorescence in panel PHA E originates from inclusions. whereas faded fluorescence in panel F is due to staining of the cell membrane.

Discussion

Sulfide production by members of the genus Beggiatoa is known from chemoheterotrophic strains that were cultivated in liquid

medium and artificially exposed to short-term anoxic conditions (Schmidt et al., 1987). Based on those experiments it was hypothesized sulfur that respiration mav provide Beggiatoa spp. in gradient systems with energy for return from the anoxic zone to the oxygen-sulfide interface under environmental changing conditions. In this study, we cultivated the chemolithoautotropic strain Beggiatoa sp. 35Flor in an sulfide oxygengradient medium, and we observed a directed migration of the filaments from the oxygensulfide interface into the anoxic and sulfidic zone where they reduced internal sulfur to sulfide. This suggested an alternative or additional function of sulfur respiration in **Beggiatoa** filaments.

We propose that the observed behavior is a survival strategy of Beggiatoa 35Flor sp. at prolonged incubation under high sulfide fluxes. Under this condition the filaments become densely filled with sulfur and were often observed to burst. By moving to the anoxic zone of the gradient system, the filaments can prevent further deposition of sulfur through aerobic sulfide oxidation and may even reduce the amount of

storage compounds by sulfur respiration with PHA. We observed that filaments can migrate back to the oxygensulfide interface, where they resume aerobic sulfide oxidation and accumulate new sulfur globules.

Sulfur respiration for regulation of the amount of stored sulfur The alteration between sulfide oxidation and sulfur reduction in spatially separated environments seems to allow Beggiatoa sp. 35Flor to control the amount of stored sulfur beyond the scope of enzymatic regulation. Sulfide is oxidized by Beggiatoa spp. in a two-step process via internally stored sulfur (2 H2S + O2 2 SO + 2 H2O) and further to sulfate (2 S0 + 3 O2 + 2 H2O -> 2 SO42-+ 4 H+). The regulation of these reactions is unknown in Beggiatoa spp., but the presence of internal sulfur globules demonstrates that the rates of the two reactions are not always well balanced. In principle, a balanced sulfur content can be achieved bv either downregulating sulfide oxidation or up-regulating sulfur oxidation.

It is likely that sulfide oxidation is controlled kinetically and cannot be regulated by the cell,

because both O2 and H2S are diffusing freelv into the cytoplasm. This is supported by observations on two related genera Thiomargarita and Marithioploca, which both immediately increased their respiration rate upon addition of sulfide to the medium (Schulz and de Beer, 2002; H0gslund et al., 2009). Therefore, upregulation of the sulfur oxidation seems to be the more likely mechanism for balancing the internal sulfur content. However, at high sulfide fluxes bursting of Beggiatoa sp. 35Flor filaments densely filled with sulfur globules indicates that further up-regulation of sulfur oxidation was not possible, e.g. due to enzymatic rate limitation.

As an alternative to enzymatic regulation, the filaments may leave the overlapping zone of oxygen and sulfide in order to starve themselves of electron donor or acceptor, thereby interrupting sulfur deposition. A negative chemotactic response to oxygen (M0ller et al., 1985) presumably prevented the filaments from moving upwards into the oxic section of the gradient system. Instead, they migrated downwards into the sulfidic section. anoxic and where sulfide could no longer be

oxidized to sulfur due to the lack of an electron acceptor. These filaments moved into the sulfidic surprising, zone. which is because elevated sulfide concentrations have previously been reported to be toxic for Beggiatoa spp. (Winogradsky, 1887; Keil, 1912; Nelson et al., 1986a). However, all earlier studies were done under oxic conditions. Our study indicates that Beggiatoa can tolerate higher sulfide concentrations under anoxic conditions. whereas under oxic conditions high sulfide concentrations can cause cell death indirectly by inducing excessive sulfur accumulation.

Metabolism of Beggiatoa in the anoxic zone of gradient systems

The depletion of sulfur and polyhydroxyalkanoate inclusions together with the production of sulfide suggests that Beggiatoa sp. 35Flor reduced internal sulfur by oxidizing stored carbon in the anoxic part of the gradient system. It is not known which type of PHA was synthesized by Beggiatoa sp. 35Flor, but for the most frequent PHA, poly (3hydroxybutyrate) (PHB), the reaction ($[C4O2H6] + n \cdot 9 S0 +$ $n \cdot 6 H2O \wedge n \cdot 4 CO2 + n \cdot 9$ H2S), which is pH-neutral, would be in agreement with the observed pH profiles. Bv

reducing stored sulfur with stored PHA that derived from previously fixed CO2. the filaments do not exploit an additional energy source in the anoxic environment. Instead. they use this process as the only possibility to empty storage space. Presence of filamentous Beggiatoaceae in the anoxic section of oxygen-sulfide gradient systems has so far been shown in multiple laboratory and field studies (JOrgensen, 1977; Sweerts et al., 1990; MuBmann et al., 2003; Kamp et al., 2006; Hinck et al., 2007; J0rgensen et al., 2010). However, in these systems either external or internal nitrate was present and could have been used for oxidizing sulfide in the anoxic zone of the sediment. Nitrate respiration could, however, be excluded in our experiments as NOx compounds were absent from the medium and filaments. The role of sulfur reduction by Beggiatoa spp. in the environment The migration behavior and sulfur reduction by Beggiatoa filaments described in our study

sulfur reduction by Beggiatoa filaments described in our study may occur and play the same role also in natural habitats. In the environment, filaments could respond to high sulfide fluxes either by moving laterally to an adjacent region with a lower sulfide flux or, if this is not possible, by migrating vertically the sulfidic and anoxic to sediment section below, where they respire sulfur (Figure 2.1.4). This is supported by the fact that sulfide fluxes in our culture tubes (Table 2.1.3 A) were in the range of fluxes measured in different natural Beggiatoa mats (Table 2.1.3 B), and that similar heterogeneity in internal sulfur content of Beggiatoa filaments was also observed for filaments collected from natural mats (Sassen et al., 1993; Bernard and Fenchel. 1995). However, the conditions at which these phenomena occur will depend on the possible maximum oxidation rates of sulfide and ultimately sulfur, which likely define the tolerance of different Beggiatoa species towards high sulfide fluxes.

Figure 2.1.4: Proposed function of sulfur reduction as a survival strategy of Beggiatoa sp. 35Flor under high sulfide fluxes. In locations with high sulfide fluxes (right side) Beggiatoa filaments become excessively filled with sulfur (black dots inside the filaments), because the two

oxidation rates of sulfide to sulfur (K1) and sulfur to sulfate (K2) are not well balanced (K1>K2). To prevent bursting, filaments can move into a region with a lower sulfide flux (black arrow) where these two reactions may proceed in a balanced way. If this is not possible, filaments leave the oxygen-sulfide interface and move down into an anoxic region to reduce their internal sulfur deposits and thus prevent bursting (white arrow). They do so by using internally stored PHA as an electron donor to reduce S0 to H2S. After emptying the storage space, the filaments return to the oxygensulfide interface and continue with sulfide oxidation.

2.2 Coordinated movement of Beggiatoa filaments in oxygensulfide gradients and the effect of blue/green light

Abstract

Filamentous sulfide-oxidizing bacteria of the genus Beggiatoa are gradient organisms. When autotrophically grown in opposing gradients of oxygen and sulfide. the filaments establish a thin and well-defined mat in the overlapping zone of oxygen and sulfide. We found that cyclic Adenosine-monophosphate (cAMP) and cyclic diguanylate (c-di-GMP) or blue

light can modify or disturb this typical behavior.

Introduction

Large filamentous sulfur bacteria of the genus Beggiatoa form a thin mat in the overlapping zone of oxygen and sulfide (Nelson et al., 1986a), where they oxidize the upwards diffusing sulfide with oxygen (e.g. Winogradsky, 1887; Keil, 1912; JOrgensen, 1977; Nelson and Castenholz, 1981). The formation of a thin mat between steep opposing gradients of oxygen and sulfide is thought to be the result of toxicity of both compounds for these bacteria (Winogradsky, 1887: Keil. 1912: Moller et al.. 1985). Furthermore. a migrational reaction was also observed when filaments were illuminated with light (Winogradsky, 1887; Nelson and Castenholz, 1982; M0ller et al., 1985), suggesting that light may also play a role in the migration during of Beggiatoa mat formation. In this study, we found that, in addition to light, chemical substances such as cyclic Adenosine-monophosphate (cAMP) or cyclic diguanylate (c-di-GMP) also influence the migrational behavior and mat formation by Beggiatoa. Our results suggest that light might directly lead to a coordinated migration of а

subpopulation of filaments and that cAMP and c-di-GMP induce a dispersion of the mat.

Results and discussion

Beggiatoa filaments of strain 35Flor were cultivated in oxygen-sulfide gradient media (chapter 2.1) where they typically form a distinct mat in the overlaying zone of oxygen and sulfide. We found that several factors can modify or disturb the typical mat formation behavior of Beggiatoa filaments. The previously formed mat is disturbed and filaments distribute randomly throughout gradient medium when the cAMP and c-di-GMP are added to the culture (Figure 2.2.1). When grown under high sulfide fluxes (> 40 mmol m-2 d-1), a part of the population from the mat in the oxygen-sulfide overlapping zone migrates down into the anoxic and sulfidic zone after an incubation time of 10-14 davs. These filaments were shown to use sulfur as an electron acceptor for the oxidation of PHA, both stored internally during the time spent in the oxygen-sulfide overlapping zone (Chapter 2.1). The downward migration was proposed as the last resort

strategy for the filaments to prevent cell disruption, which would otherwise occur due to excessive accumulation of internal sulfur bv sulfide oxidation. A very similar migration behavior was observed when the previously formed Beggiatoa mat was illuminated by light in the blue to green region (Fig. 2.2.2). When cyan light is applied to a four days old culture incubated at a high sulfide flux (40 mmol m-2 d-1) a downward migration of a subpopulation of filaments can be observed immediately (Figure 2.2.2). In contrast to the migration in the dark, that occurs after 10-14 days, the migration can be induced with light even after incubation times of a few days. Figure 2.2.1: Beggiatoa sp. 35Flor filament distribution at a low sulfide flux (10.8 mmol m-2d 1) is shown in A. The addition of 20 of c-di-GMP (0.01

^mol L-1; B) or 10 cAMP (100 mM; C) leads to the disruption of the mat starting after 2 hours (here shown after 8 hours). When Phosphate buffer or water was added there was no migrational reaction of the Beggiatoa filaments (data not shown).

Figure 2.2.2: Average sulfur globule density of Beggiatoa filaments at a high sulfide flux as

function of time and depth (calculation see Chapter 2.1). The culture was pre-incubated for 4 days in the dark where the mat at the oxygen sulfide interface established. The imaging started in the dark (black bar). After 4 hours the culture was illuminated with cyan light (cyan bar) and a subpopulation of filaments immediately migrated downwards.

The data presented here show that the known signalling molecules also have an effect on an established Beggiatoa mat and can lead to migrational reactions of the filaments. The disturbed mat is and the filaments distribute randomly in the culture tube. Therefore, it is possible that these substances might be used as signalling molecules among **Beggiatoa** filaments. In contrast to this, a directed migration known from cultures with a high sulfide flux (Chapter 2.1) can be induced by applying blue/green light to the culture, indicating that light might be involved in the migration of Beggiatoa filaments.

Chapter 3 Co-cultivation of a marine Beggiatoa strain and Pseudovibrio sp. In this chapter, the association between the large Beggiatoa sp.

35Flor and the accompanying Pseudovibrio sp. FO-BEG1 (Figure 3) is investigated. The first part of this chapter is a study on the co-culture of the two organisms written as a short communication. In order to study the association from the side of the Pseudovibrio sp, the genome of this bacterium was analyzed in detail. This second part of this chapter comprises an abstract about the genomic analysis and comparison of the isolated Pseudovibrio sp. and another Pseudovibrio sp. strain associated with a sponge. Both strains are able to grow in pure culture and both genomes reveal a versatile metabolism of the bacteria. During the genome analysis of Pseudovibrio sp. strain FO-BEG1 we found several genes encoding for more than 20 superoxide dismutases, catalases and peroxidases additionally to genes for the interaction with other cells. The manuscript to this second part of this chapter is added as an appendix to the thesis.

Figure3:DifferentialinterferencecontrastmicrographofaBeggiatoasp.ofaBeggiatoasp.Pseudovibriosp.co-culture.Contributions:3.1A3.1AchemolithoautotrophicBeggiatoastrainrequiringthepresenceofaPseudovibriosp.

grows in the presence of a Pseudovibrio sp. strain. Introduction

Beggiatoa spp. are colorless sulfur bacteria forming mats at the oxic-anoxic interface where they oxidize sulfide with oxygen (e. g. Winogradsky, 1887; Keil, 1912; JOrgensen, 1977; Nelson and Castenholz, 1981). Smaller chemolithoautotrophic strains (diameter < 5 |im) have been isolated into pure culture by using an agar based medium with opposing gradients of sulfide and oxygen (Nelson and Jannasch, 1983; Nelson et al., 1986a). Besides these strains, only heterotrophic freshwater Beggiatoa spp. strains were obtained in pure culture (Strohl and Larkin, 1978).

I nann Lam bat dau		
The reason for the general	Nguyên nhân khiến việc tách các	
difficulty to isolate larger	thành viên hóa tự dưỡng vô cơ	
chemolithoautotrophic members	thuộc họ Beggiatoaceae trong	
of the family Beggiatoaceae in	môi trường nuôi cấy thuần gặp	
pure culture is still unknown. We	khó khăn vẫn còn là ẩn số. Ở	
obtained a marine Beggiatoa sp.	môi trường nuôi cấy ổn định,	
strain of 6 im in diameter into a	chúng tôi đã thu được một chủng	
stable culture, but did not	Beggiatoa sp. biển có đường	
succeed in growing it axenically.	kính 6 im nhưng khi nuôi nó	
Apart from all attempts to clean	trong môi trường không có ngoại	
the Beggiatoa sp. 35Flor a single	vật thì lại thất bại. Bất chấp mọi	
type of organism, which was	cổ gắng nhằm tách lọc Beggiatoa	
identified as Pseudovibrio sp.	sp. 35Fl, vẫn luôn còn một loại	
FO-BEG1 remained. Here, we	sinh vật khác tôn tại song hành -	
present experiments indicating	nó được xác định là	
that the presence of this	Pseudovibrio sp. FO-BEG1	
accompanying organism is	O đây, chúng tôi trình bày thí	
required for the growth of the	nghiệm chứng minh rằng sự hiện	
Beggiatoa sp. strain.	diện của sinh vật đi kém này là	
	chủng Beggiatoa sp.	
Posults and discussion	chủng Beggiatoa sp.	
Results and discussion	chủng Beggiatoa sp.	
Results and discussion Under higher sulfide fluxes (> 40 mmol m 2 d 1) a subpopulation	Can thiết chố sự tăng trường củachủng Beggiatoa sp.Trong điều kiện luồng sunfuacao hơn	
Results and discussion Under higher sulfide fluxes (> 40 mmol m-2 d-1) a subpopulation of the Beggiatoa filaments	chủng Beggiatoa sp. Trong điều kiện luồng sunfua cao hơn	
Results and discussion Under higher sulfide fluxes (> 40 mmol m-2 d-1) a subpopulation of the Beggiatoa filaments actively migrated into lower and	 chủng Beggiatoa sp. Trong điều kiện luồng sunfua cao hơn 	
Results and discussion Under higher sulfide fluxes (> 40 mmol m-2 d-1) a subpopulation of the Beggiatoa filaments actively migrated into lower and anoxic parts of the culture tube	 chủng Beggiatoa sp. Trong điều kiện luồng sunfua cao hơn 	
Results and discussion Under higher sulfide fluxes (> 40 mmol m-2 d-1) a subpopulation of the Beggiatoa filaments actively migrated into lower and anoxic parts of the culture tube (Figure 3.1) where they reduced	chủng Beggiatoa sp. Trong điều kiện luồng sunfua cao hơn đã khử	
Results and discussion Under higher sulfide fluxes (> 40 mmol m-2 d-1) a subpopulation of the Beggiatoa filaments actively migrated into lower and anoxic parts of the culture tube (Figure 3.1) where they reduced the amount of internal sulfur by	chủng Beggiatoa sp.Trong điều kiện luồng sunfua cao hơnđã khử	
Results and discussion Under higher sulfide fluxes (> 40 mmol m-2 d-1) a subpopulation of the Beggiatoa filaments actively migrated into lower and anoxic parts of the culture tube (Figure 3.1) where they reduced the amount of internal sulfur by sulfur reduction (Chapter 2.2).	chủng Beggiatoa sp. Trong điều kiện luồng sunfua cao hơn đã khử	
Results and discussion Under higher sulfide fluxes (> 40 mmol m-2 d-1) a subpopulation of the Beggiatoa filaments actively migrated into lower and anoxic parts of the culture tube (Figure 3.1) where they reduced the amount of internal sulfur by sulfur reduction (Chapter 2.2). As the accompanying	chủng Beggiatoa sp. Trong điều kiện luồng sunfua cao hơn đã khử Vì chủng	
Results and discussion Under higher sulfide fluxes (> 40 mmol m-2 d-1) a subpopulation of the Beggiatoa filaments actively migrated into lower and anoxic parts of the culture tube (Figure 3.1) where they reduced the amount of internal sulfur by sulfur reduction (Chapter 2.2). As the accompanying Pseudovibrio sp. FO-BEG1 is	chủng Beggiatoa sp. Trong điều kiện luồng sunfua cao hơn đã khử Vì chủng	
Results and discussion Under higher sulfide fluxes (> 40 mmol m-2 d-1) a subpopulation of the Beggiatoa filaments actively migrated into lower and anoxic parts of the culture tube (Figure 3.1) where they reduced the amount of internal sulfur by sulfur reduction (Chapter 2.2). As the accompanying Pseudovibrio sp. FO-BEG1 is predominantly found in the oxic	chủng Beggiatoa sp. Trong điều kiện luồng sunfua cao hơn đã khử Vì chủng	
Results and discussion Under higher sulfide fluxes (> 40 mmol m-2 d-1) a subpopulation of the Beggiatoa filaments actively migrated into lower and anoxic parts of the culture tube (Figure 3.1) where they reduced the amount of internal sulfur by sulfur reduction (Chapter 2.2). As the accompanying Pseudovibrio sp. FO-BEG1 is predominantly found in the oxic part of the culture tube (Figure	căn thiết chố sự tăng trường của chủng Beggiatoa sp. Trong điều kiện luồng sunfua cao hơn đã khử Vì chủng	
Results and discussion Under higher sulfide fluxes (> 40 mmol m-2 d-1) a subpopulation of the Beggiatoa filaments actively migrated into lower and anoxic parts of the culture tube (Figure 3.1) where they reduced the amount of internal sulfur by sulfur reduction (Chapter 2.2). As the accompanying Pseudovibrio sp. FO-BEG1 is predominantly found in the oxic part of the culture tube (Figure 3.1), these lower filaments were	Can thiết cho sự tang trường của chủng Beggiatoa sp. Trong điều kiện luồng sunfua cao hơn đã khử Vì chủng	
Results and discussion Under higher sulfide fluxes (> 40 mmol m-2 d-1) a subpopulation of the Beggiatoa filaments actively migrated into lower and anoxic parts of the culture tube (Figure 3.1) where they reduced the amount of internal sulfur by sulfur reduction (Chapter 2.2). As the accompanying Pseudovibrio sp. FO-BEG1 is predominantly found in the oxic part of the culture tube (Figure 3.1), these lower filaments were used to inoculate fresh culture	Can thiết cho sự tăng trường của chủng Beggiatoa sp. Trong điều kiện luồng sunfua cao hơn đã khử Vì chủng	
Results and discussion Under higher sulfide fluxes (> 40 mmol m-2 d-1) a subpopulation of the Beggiatoa filaments actively migrated into lower and anoxic parts of the culture tube (Figure 3.1) where they reduced the amount of internal sulfur by sulfur reduction (Chapter 2.2). As the accompanying Pseudovibrio sp. FO-BEG1 is predominantly found in the oxic part of the culture tube (Figure 3.1), these lower filaments were used to inoculate fresh culture tubes with only Beggiatoa	Can thiet cho sự tang trường của chủng Beggiatoa sp. Trong điều kiện luồng sunfua cao hơn đã khử Vì chủng	

the accompanying Pseudovibrio sp. strain.

When Beggiatoa filaments from the mat at the oxic-anoxic interface were transferred into fresh medium a new mat developed in 4 out of 5 tubes. However, if filaments from the anoxic subpopulation with no or very few Pseudovibrio cells were transferred into fresh medium, only in 1 out of 7 tubes a mat developed. Examining this single mat-containing tube under the microscope, besides Beggiatoa filaments also Pseudovibrio cells were observed. When filaments from the anoxic part were transferred into tubes containing alreadv а Pseudovibrio population, most of the tubes were positive for growth of Beggiatoa sp. (5 positive tubes out of 7 tubes). Even another Pseudovibrio strain from the culture collection (Pseudovibrio denitrificans DSM number 17465) had a similar effect on growth (4 positive tubes out of 7). Therefore, we conclude that the growth of the Beggiatoa sp. depends on the presence of an accompanying bacterium of the genus Pseudovibrio. Pseudovibrio sp. strain FO-BEG1 (cells mL~1 ể106) Figure 3.1: Distribution of the accompanying Pseudovibrio sp. strain FO-BEG1 (red squares) in co-culture with the marine

Beggiatoa sp. strain 35Flor (photograph, white filaments). The Beggiatoa filaments form a mat at the oxic-anoxic interface and a subpopulation migrates into the anoxic part of the tube. The accompanying Pseudovibrio strain is mainly present above the upper Beggiatoa mat in the oxic part of the culture tube.

Thanh Lâm kết thúc Thu Yên bắt đầu

There are a few indications about possible reasons for the a positive effect of the accompanying Pseudovibrio sp. on the growth of the large sulfide-oxidizer. Pseudovibrio cells populate mainly the oxic part of the culture tube, but Beggiatoa filaments also thrive well in the anoxic zone (Figure 3.1). Thus, it seems reasonable to assume that Pseudovibrio sp. is only required during the oxic metabolism of the Beggiatoa filaments. It may be suggested that Pseudovibrio sp. helps the Beggiatoa sp. in detoxifying oxygen radicals, as Beggiatoa typically do not possess the ability to produce the enzyme catalase (Larkin and Strohl. 1983). Moreover, earlier studies have shown a positive effect of catalase on the growth of Beggiatoa spp. (Burton and Morita, 1964; Strohl and Larkin, 1978; Gude et al., 1981; Nelson et al., 1986b). In contrast, the

accompanying Pseudovibrio strain is catalase-positive and the genome suggests further potential to detoxify oxygen radicals (Chapter 3.2). Therefore, we propose that the Beggiatoa sp. benefits from the oxygen protection system of the accompanying Pseudovibrio sp. strain and is consequently mandatory for the growth of the large sulfide-oxidizer.

3.2 The Pseudovibrio genus contains metabolically versatile and symbiotically interacting bacteria

Beggiatoa 53

Abstract

The majority of strains belonging to the genus Pseudovibrio have been isolated from marine invertebrates like tunicates, corals and especially sponges, but the physiology of these bacteria is poorly understood. In this study, we analyze the genomes of two Pseudovibrio strains. One is a required symbiont of a cultivated Beggiatoa strain, a sulfide oxidizing, autotrophic bacterium. The other one was isolated from a sponge (Enticknap et al., 2006). The data show that both strains are generalistic bacteria capable of importing and oxidizing a wide range of inorganic organic and

thêm được phân lập từ

compounds to meet their carbon, nitrogen, phosphorous and energy requirements under oxic and anoxic conditions. Several physiological traits encoded in the genome were verified in laboratory experiments with a pure culture of the Pseudovibrio strain originally associated with Beggiatoa. Besides the versatile metabolic abilities of both Pseudovibrio strains, our study reveals a number of open reading frames and gene clusters in the genomes that seem to be involved in symbiont-host interactions. Pseudovibrio has the genomic potential to attach to host cells, might be capable of interacting with the eukaryotic cell machinery, produce secondary metabolites and may supply the host with cofactors.

Chapter 4 Isolation and cultivation of Pseudovibrio sp. and other facultatively oligotrophic bacteria Thu Yên kết thúc

The fourth chapter includes a detailed physiological investigation of the growth and substrate use of the isolated Pseudovibrio sp. FO-BEG1 under oligotrophic conditions. These results are presented in the first manuscript of this chapter. The investigated Pseudovibrio strain is on the one hand able to

extremely grow under oligotrophic conditions and on the other hand it can grow on organic-rich media (Figure 4). Eventually, we were able to isolate further facultatively oligotrophic bacteria from Namibian sediments, which are highly populated by large sulfur bacteria. The isolation and cultivation of these bacteria belonging to different phylogenetic groups is presented in the second manuscript of this chapter.

Figure 4: Growth of Pseudovibrio sp. FO-BEG1 on organic-rich agar plates at day 2 forming colonies (left) and in pure artificial seawater (right).

Contributions:

4.1 Substrate of use Pseudovibrio sp. growing in extremely oligotrophic seawater developed the concept of Ι this study with assistance of H. N. Schulz-Vogt, M. Seidel and T. Dittmar. Furthermore. I performed the medium preparation and sampling with the help of M. Seidel. FT-ICR-MS measurements were performed together with M. Seidel. HPLC analysis was performed by the group of M. Simon. G. Lavik assisted during the measurement and analysis of isotope-labelling the

V. Bondarev experiments. performed glucose and ammonia addition experiments and S. Romano the biolog experiment. I manuscript with wrote the assistance of the co-authors. Facultatively oligotrophic 4.2 bacteria isolated from the habitat of large sulfide-oxidizers

A. Schwedt, V. Bondarev, M. Seidel, T. Dittmar, H. N. Schulz-Vogt

This study was initiated by me with the help of H. N. Schulz-Vogt. I performed all isolations and cultivations. V. Bondarev assisted me with counting of the cells, M. Seidel and T. Dittmar measured DOC concentrations. The manuscript was written by me including comments of all co-authors.

4.1 Substrate use of Pseudovibrio sp. growing in extremely oligotrophic seawater

Abstract

Marine planktonic bacteria often live in habitats with extremely low concentrations of dissolved organic matter (DOM). To study the use of trace amounts of DOM bv the facultatively oligotrophic bacterium Pseudovibrio sp. strain FO-BEG1, we investigated the composition of artificial and natural seawater before and after

growth. For this, we determined dissolved organic carbon (DOC), total dissolved nitrogen (TDN), composition of DOM bv electrospray ionization Fourier transform ion cyclotron resonance spectrometry mass (ESI FT-ICR-MS) and amino acids by high performance liquid chromatography (HPLC). The DOC concentration of artificial seawater was 0.06 mg C L-1 (5 ^mol C L-1), which was an order of magnitude below the concentration in the natural seawater (0.9 mg C L-1 or 75 С L-1). limol DOC concentrations did not decrease measurably during growth. Cell numbers increased from about 20 cells mL-1 to 20,000 cells mL-1 in artificial and to 800,000 cells mL-1 in natural seawater. No nitrogen fixation and minor CO2 fixation (< 1%) was observed. In both media, amino acids were not the maior nutrient. Instead, we observed a decrease of compounds resembling detergents in artificial seawater, which also contained nitrogen. In natural seawater, we detected a decrease of two groups of compounds, one resembling aminoand thiosugars, which are also rich in nitrogen, and another group containing condensed hydrocarbons. The present study shows that heterotrophic bacteria

máy quang phổ khối cộng hưởng cyclotron ion sử dụng phép biến đổi Fourier can grow with even lower DOC concentrations than available in natural oligotrophic seawater and may use unexpected organic compounds to fuel their energy, carbon and nitrogen requirements. Introduction

In open oceans, the amount of dissolved organic matter (DOM) is typically indicated as the concentration of dissolved organic carbon (DOC) and is generally below 1 mg C L-1 (Schut et al., 1997; Hansell et al., 2009). Consequently, marine bacteria are commonly exposed to very low concentrations of organic material. Marine DOM is an extremely diverse pool of different compounds, consisting of more than ten thousand types of molecules with different reactivities (Dittmar and Paeng, 2009). Previous studies demonstrated that most of the DOM in the ocean is inert to bacterial break-down and cannot utilized be by marine microorganisms (Bada and Lee, 1977; Ammerman et al., 1984; Zweifel 1993). et al.. Measurements of the consumption of specific substrates revealed that a large fraction of the labile organic material that is used in the upper ocean can consist of dissolved free amino acids (DFAA), dissolved combined amino acids

(DCAA) and monosaccharides. These substances can account for 5 to 100% of the bacterial carbon and nitrogen demand (Fuhrman, 1987; JOrgensen, 1987; Stanley et al., 1987; Cowie and Hedges, 1992; Keil and Kirchman, 1999; Cherrier and Bauer, 2004). In many natural systems, amino acids are only present in nanomolar concentrations even though the flux of amino acids is comparably high due to a close coupling of their release and uptake by planktonic microorganisms (Fuhrman, 1987; Fuhrman, 1990; Keil and Kirchman, 1999). Still, amino acids and monosaccharides alone cannot fully explain the growth of the bacteria in all cases, where they represent only a small fraction of the C- and Nrequirements (Fuhrman, 1987; al., 1987). Stanley et The remaining demand must be covered by different DOM compounds, which might be only very low present at Therefore. concentrations. to specifically investigate the compounds consumed by the bacteria during growth under oligotrophic conditions. а method detecting а broad spectrum of different organic compounds with a low detection limit, such as electrospray ionization Fourier transform ion cyclotron resonance mass

dụng phép biến đổi Fourier ion nóa tia điên

spectrometry (ESI FT-ICR-MS), is necessary.

In contrast to natural systems where several processes supply nutrients simultaneously, a batch culture containing a single strain of bacteria is a closed system with defined amounts of nutrients. In such a system, it is possible to analyze compounds that are utilized during the growth of this strain. For the cultivation of marine bacteria. defined artificial seawater or natural seawater containing a diverse DOM pool can serve as a medium. In both seawater media. risk contamination the of especially with amino acids is a well known problem (Dittmar et al., 2009).

In the present study, we chose to investigate the substrate use of the marine Pseudovibrio sp. strain FO-BEG1, because it is capable grow under to oligotrophic conditions in extremely pure artificial seawater. In spite of special purification of the artificial medium. DOC seawater а concentration of 0.06 mg C L-1 (5 |imol C L-1) was measured, which is, nevertheless, low compared to the natural oligotrophic seawater with a DOC concentration of 0.9 mg C L-1 (75 |imol C L-1). We

compared the substrate use in artificial seawater with natural oligotrophic seawater. In both media, DOC concentrations did not decrease measurably during growth of the bacteria. The composition of the DOM before and after growth in artificial and natural seawater was analyzed by high performance liquid chromatography (HPLC) measuring amino acids and by ESI FT-ICR-MS revealing changes on the level of individual molecules intact indicated by molecular formulas. combination The of these methods with isotope-labeling techniques to study incorporation of N2 and CO2 provides information of compounds used by the bacteria during growth under these extremely oligotrophic conditions.

Material and methods Medium preparation and bacterial strain The basal artificial oligotrophic seawater medium is composed of 30.3 g NaCl, 3.3 g MgCl2 • 6 H2O, 2.8 g MgSO4 • 2 H2O, 0.44 g CaCl2 • 2 H2O, 0.7 g KCl, 50 |il 2 mol L-1 NaOH, 2 mL 1 mol L-1 NaHCO3, 1 mL 1 mmol L-1 K2HPO4 and 1 mL trace elements solution in 1 L MembraPure water (Optilab-Standard Water System,

glucose and ammonium were added at a final concentration of 30 |imol L-1. These cultures were incubated gently shaken (shaker GFL-3013, Gesellschaft fur Labortechnik mbH, Burgwedel, Germany) at 28°C in the dark.

Natural surface seawater was collected in the South Pacific during Integrated Ocean Drilling (IODP) Expedition 329 from IODP Site U1368 (27.9°S ; 137.9°W) with a bucket and stored at 4°C. Before incubation, seawater was filtered through washed Acrodisc 25 mm syringe filters with a 0.2 |im GHP membrane (Pall Life Sciences, Ann Arbor, MI, USA) and filled into pre-combusted serum bottles that were closed with Teflon Inoculated cultures stoppers. were incubated without shaking at 28°C in the dark.

Media were inoculated with 100 |iL of an oligotrophically pregrown culture (about 2 X 104 cells mL-1) of Pseudovibrio sp. FO-BEG1. Thus, the initial cell number after inoculation accounts to 4 to 20 cells mL-1 Cell counts

Cells were stained with 1:5000 SYBR Green (SYBR Green I 10,000x, Sigma, Taufkirchen, Germany) for 20 minutes. The stained cells were filtered onto black filters (GTTP Isopore Membrane Filters 0.22 |im,

Millipore, Schwalbach/Ts., Germany) using a **Bio-Dot** apparatus (Bio-Rad, Munchen, Germany). Counting of cells was performed using a fluorescence microscope (Axiophot, Zeiss, Jena, Germany) at 450-490 nm excitation and 515-565 nm emission (filter set 10, Zeiss, Jena, Germany). solid

Sampling and solid phase extraction of dissolved organic matter (SPE-DOM)

About 900 mL medium (six serum bottles, 156 mL each) were pooled at four different time points (blank, to, t1, t2). The blank was taken directly after medium preparation without inoculation and inoculated samples were taken before (t0), after 1 week (t1) and after 3 weeks (t2) of incubation. Samples were filtered into 1 L glass bottles using Acrodisc 25 mm syringe filters with a 0.2 |im GHP membrane (Pall Life Sciences, Ann Arbor, MI, USA) and acidified to pH 2 with 25% HCl. Samples for DOC measurements and amino acid analysis were taken after pooling the six serum bottles into a 1 L glass bottle. DOC samples were measured directly and samples for amino acid analysis were stored at -20°C. All samples were stored at 4°C until further analysis. From all four time points, DOM was extracted

using the solid phase extraction of dissolved organic matter (SPE-DOM) method (Dittmar et al., 2008). The extracts of dissolved organic matter were analyzed using ESI FT-ICR-MS (see below). Measurement of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were analyzed before, during and after growth of the bacteria using a Shimadzu TOC-VCPH total organic carbon analyzer (Shimadzu, Kyoto, Japan) equipped with a TNM-1 total nitrogen measuring unit and ASI-V autosampler. To an remove cells prior to analysis, samples were filtered through Acrodisc 25 mm syringe filters with a 0.2 |im GHP membrane (Pall Life Sciences, Ann Arbor, MI. USA). Within the instrument. samples were acidified with 1% v/v 2 mol L-1 HCl and sparged with synthetic air for 2 minutes to remove inorganic carbon. Detection limits were 0.5 |imol L-1 for DOC and TDN (0.006 mg C L-1 and 0.007 mg Ν L-1. respectively). Analytical errors based on the standard deviations for replicated measurements (at least three measurements per sample) were within 5% for DOC and TDN. Analytical

precision and accuracy was tested in each run against deep Atlantic seawater reference material and low carbon water provided by the consensus reference materials program (D.A. Hansell, University of Miami, Coral Gables, FL, USA). Procedural blanks, including the filtration step, were obtained with ultrapure water.

Amino acids analysis

The concentrations of dissolved free amino acids (DFAA) and total hydrolysable dissolved amino acids (THDAA) were analyzed using high performance liquid chromatography (HPLC) as described earlier (Lunau et al., Derivatization 2006). was performed using orthoan phthaldiadehyde precolumn (Lindroth and Mopper, 1979). All samples were filtered through prewashed Acrodisc 25 mm syringe filters with a 0.2 |im GHP membrane (Pall Life Sciences, Ann Arbor, MI, USA). Prior to the analysis of THDAA, HCl was added to a final concentration of 1.7 mol L-1 and incubated for 1 hour at 155°C under nitrogen atmosphere. The concentration of dissolved combined amino acids (DCAA) was calculated by subtracting the concentration of DFAA from the concentration of THDAA. H13CO3 and 15N2 labeling experiments

For labeling experiments, oligotrophic artificial seawater medium was prepared as described above, however, DOM was not extracted prior to use and it was prepared under synthetic air atmosphere (20% O2 in N2; H2O < 3 ppm-mol, CnHm < 0.1 ppm-mol, CO < 1ppm-mol, CO2 < 1 ppm-mol; Air Liquide, Krefeld, Germany). From each 156 mL serum bottle, which was completely filled with medium, 5 mL medium were exchanged with 5 mL 15N2 gas and 300 |iL of 1 mol L-1 NaH13CO3 were added. After inoculation with Pseudovibrio sp. FO- BEG1 (100 |iL of a preculture containing about 2 X 104 cells mL-1), samples were incubated for 12 hours, 3 and 5 days. Then the bacteria were onto filtered pre-combusted Glass Microfibre Filters (GF/F, Whatman. GE Healthcare. Dassel, Germany), frozen for 12 hours and dehydrated in an HCl desiccator. Filters were folded into tin cups and flash combusted (1050°C) within the mass spectrometer to release N2 and CO2. For analysis, we used elemental analyzer (with an autosampler) coupled to a Delta Plus Advantage mass spectrometer isotope-ratio monitoring mass spectrometer (ThermoFinnigan, Bremen,

Germany). To calculate the amount of label in the cells the percentage of label added was taken into account. Fourier transform ion cyclotron spectrometry resonance mass (FT-ICR-MS) SPE-DOM extracts were diluted 1:1 with ultrapure water to yield DOC concentrations of 10 ppm for natural seawater and about 2 ppm for artificial seawater incubations. respectively. Diluted samples were analyzed on a solariX Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS; Bruker Daltonik GmbH. Bremen, Germany) connected to 15 Tesla superconducting а (Bruker magnet Biospin, Wissembourg, France). Samples were infused at a rate of 2 |iL min-1 into an electrospray

source (ESI; Apollo II ion source, Bruker Daltonik GmbH, Bremen, Germany) with the capillary voltage set to 4 kV in negative mode and 4.5 kV in

mode.

accumulated in the hexapole for 0.3 seconds prior to transfer into the ICR cell. Data acquisition was done in broadband mode using 4 megaword data sets and a scanning range of 150-2000

externally calibrated with an inhouse marine deep sea DOM standard (mass accuracy of less

Ions

instrument

were

was

positive

Da.

The

Máy quang phổ khối cộng hưởng cyclotron ion sử dụng phép biến đổi Fourier

máy quang phổ khối cộng hưởng cyclotron ion sử dụng phép biến đổi Fourier

than 0.1 ppm). Before each sample set, blank checks with methanol/ultrapure water 1:1 were measured. For one mass spectrum, 500 scans were added and internally calibrated with the in-house marine deep sea DOM standard vield to a mass accuracy of less than 0.1 ppm for the internal calibrants (series of CxHyOz compounds from 281 to 621 Da). The molecular formulas were calculated in the mass range between 150 and 850 Da by applying the following restrictions: 12C0-1301H0-20001-5014N0-4S0-2P0-2 (considering also 23Na clusters in ESI positive mode). Assignment of molecular formulas was done with the Bruker software DataAnalysis 4.0 SP 4 using the criteria described by Koch et al. (2005). Molecular formulas were considered valid when the mass error was below 0.5 ppm. Only compounds with a signal-tonoise ratio of 3 and higher were used for further analysis. The achieved resolving power (full width half maximum) was on average 480,000 at m/z 400. Relative peak heights were calculated by normalization to the ten most abundant peaks in

each spectrum (triplicate measurements). These peak heights were then used to semiquantitatively assess changes in

DOM composition in natural oligotrophic seawater experiments. FT-ICR-MS is not a quantitative tool for DOM analysis due to the lack of standards and differences in ionization efficiencies for different compounds. However, this method yields reproducible results because the variability of relative peak heights is low under similar analytical conditions (Kido Soule et al., 2010).

Sequential standard addition was applied to quantify the amount of polyethylene glycol (PEG) contamination in the artificial medium using seawater an authentic PEG standard (octaethylene glycol, C16H34O9, > 99% oligomer purity, 370 g mol-1, Sigma, Taufkirchen, Germany). PEG was added in concentrations of 1 to 3.6 nmol L-1 and FT-ICR mass spectra were recorded in ESI positive mode. To yield a linear response range in the MS, accumulation time ion was lowered to 0.1 seconds and 50 scans were added for one mass spectrum. The amount of PEG in the samples was calculated from a linear calibration derived from peak heights in FT-ICR mass spectra. To investigate the suppression effect of the inorganic contamination on organic peaks during FT-ICR-

MS, the in-house natural deep sea DOM standard was added in the range of 0.04 to 4 mg C L-1 to a sample contaminated with the inorganic substances and measured in ESI negative mode. Biolog experiment

A substrate respiration test was performed using a biolog GN2 plate (Hayward, CA, USA) with 95 different substrates. The bacteria were pre-grown in artificial seawater medium in 1 L bottles (Schott, Mainz, Germany). After 6 days, cells concentrated were by centrifugation for 2 hours at 11,000 X g and 15°C using a J-Beckman centrifuge 26XP (Beckman Coulter GmbH. Krefeld. Germany). A11 centrifugation tubes were acid washed (0.1 mol L-1 HCl) and rinsed with water. The obtained pellet was suspended in 20 mL of sterile saline solution (23.5 g L-1 NaCl and 10.6 g L-1 MgCl2 • 6 H2O). To verify the viability of the cells, 50 |iL of the cell suspension was spread on organic-rich medium containing 2 g polypeptone, 0.5 g Bacto yeast extract (BD Diagnostics, Heidelberg, Germany), 30 g NaCl, 5 g MgCl2 • 6 H2O, 0.005 g CaCl2 • 2 H2O, 0.005 g Na2MoO4 • 7 H2O, 0.004 g CuCl2 • 2 H2O, 0.006 g FeCl3 • 6 H2O, 15 g bactoagar in 1 L MembraPure water and the pH

was adjusted to 8 with 1 mol L-1 NaOH. The biolog plate was inoculated with 150 |iL of the concentrated cells and incubated at 28oC in the dark in a humidity chamber to prevent excess evaporation. Activity of cells was checked visually each day for a total of 14 days.

Results

Growth under oligotrophic conditions

The investigated Pseudovibrio sp. strain FO-BEG1 was able to multiply in both artificial and natural seawater. The initial cell number was about 20 cells mL-1 and in artificial seawater cell numbers increased to 2 X 104 cells mL-1 at time points t1 and t2 (one and three weeks after inoculation. respectively). Natural seawater medium contained about 8 X 105 cell mL-1 at both time points. In both media, the increase in cell numbers was detected during the first week of incubation (to to t1) and cell numbers did not change in the following two weeks (t1 to t2).

Dissolved organic carbon (DOC), total dissolved nitrogen (TDN) and dissolved free and combined amino acids (DFAA and DCAA)

In pure artificial seawater medium before bottling, the DOC contamination from salts was only 1 urnol C L-1. During

the bottling of the medium and with the addition of NaHCO3, K2HPO4. NaOH and trace elements, the concentration of DOC increased to about 4.5 limol C L-1 (Table 4.1.1). The TDN was below limit of detection (0.5 |imol N L-1) in the sterile artificial medium before and after bottling (Table 4.1.1). Inoculation did not introduce further measurable DOC or TDN to the medium (t0). After one (t1) and three weeks (t2) of incubation, the concentrations of DOC and TDN did not change significantly in the medium (Table 4.1.1). In comparison to the artificial seawater medium, the DOC concentration in natural seawater was about 16 times higher (71 |imol L-1; Table 4.1.1). However, no significant change in DOC concentration was detectable during growth, as DOC concentrations one and three weeks after inoculation were 78.5 and 75 |imol C L-1, respectively. A similar pattern for was observed TDN concentrations. which were around 12 |imol N L-1 at all time points (Table 4.1.1). In contrast to DOC and TDN, the

amount of DFAA decreased in the artificial seawater cultures within the first week of growth (from t0 to t1). This decrease represents a DFAA uptake of 0.06 |imol C L-1 and 0.02 |imol

N L-1 (Table 4.1.1). However, the concentrations of DFAA remained constant until t2. The most abundant amino acids were serine, glycine and alanine, which together accounted for 0.05 |imol C L-1. The decrease in DFAA (from t0 to t1) was concurrently observed with an increase of DCAA. During the stationary growth phase (from t1 to t2), the DCAA concentrations decreased again (Table 4.1.1). the Opposed to artificial seawater incubations, the amino acids concentrations (THDAA) in natural seawater were very low and no change during incubation could be observed (Table 4.1.1).

Nitrogen and Cacbon điôxít fixation

The incorporation of labeled nitrogen (15N2) and carbon (NaH13CO3) into Pseudovibrio sp. FO-BEG1 growing in pure artificial seawater medium was examined using isotope-ratio monitoring mass spectrometry. Less than 1% of cellular carbon originated from Cacbon điôxít fixation under the oligotrophic growth conditions in artificial seawater. Nitrogen fixation was not detectable. Table 4.1.1: Artificial

Table4.1.1:Artificialandnaturalseawatermedium:Amountsofdissolvedorganiccarbon(DOC)andtotal

dissolved nitrogen (TDN), dissolved amino free acids dissolved combined (DFAA), amino acids (DCAA) or total hydrolysable dissolved amino acids (THDAA) at the different time points (before bottling: only medium; blank: medium poured bottles into serum before inoculation: t0: directly after inoculation; tí 1 week after inoculation: t2: 3 weeks after inoculation). (n.d. = not determined)

Composition of the dissolved organic matter

The analysis of extracted DOM and from artificial natural seawater using FT-ICR-MS was performed in the negative and positive electrospray ionization (ESI) mode. In ESI negative mode, 690 of 7347 peaks (10%) in artificial and 3685 of 14873 peaks (25%) in natural seawater were assigned with molecular formulas (Figure 4.1.2). However, in negative ESI mode contaminants inorganic (as indicated by a negative mass defect) suppressed ionization of organic molecules. To estimate this suppression effect, natural deep sea SPE-DOM was added to the artificial seawater extracts in the same. tenfold and hundredfold concentration (0.04, 0.4 and 4 mg C L-1). The DOM signal was completely suppressed after addition of 0.04

mg C L-1 (same range as the measured DOC contamination in the artificial seawater). In contrast, the typical distribution of natural DOM peaks in the mass spectrum was detected after addition of 0.4 and 4 mg C L-1 natural DOM (ten- and hundredfold the DOC concentration in artificial seawater). As a consequence, spectra FT-ICR-MS of the artificial seawater medium had to be analyzed in ESI positive mode, in which the inorganic contaminants were not detected. The mass spectra obtained after positive ionization revealed two homologous series of high peaks with distances of 44.02567 Da (C2H4O1) corresponding to a homologous series of polyethylene glycol (PEG) oligomers (Figure 4.1.1 A). The PEG peaks were present in the mass spectra of all sampled time points. Therefore, the mean intensity of five PEG peaks (m/z 349.183268. 305.157061. 393.209484. 437.235707, 481.261932) was used to normalize all other peaks in the mass spectra (Figure 4.1.1 A, arrows). The amount of PEG contamination was quantified by addition standard to the contaminated SPE-DOM blanks from artificial seawater using an authentic PEG standard (Figure 4.1.1 B and C). The total amount

of PEG in the sample was then calculated to account for only 3 nmol C L-1, which is three orders of magnitude below the measured concentration of the DOC contamination in the artificial seawater medium (5 imol C L-1). Thus, the PEG contamination was extremely low despite the very high peaks in the ESI FT-ICR mass spectra (Figure 4.1.1). A screening for potential PEG contaminations indicated NaOH as a likely source (data not shown).

Figure 4.1.1: Polyethylene glycol (PEG) contamination in artificial seawater: (A) FT-ICR mass spectra measured from the artificial seawater extracts (ESI positive mode) showing high peaks of PEG contamination with intervals of 44.02567 Da. Vertical arrows indicate the peaks used for normalization. (B) FT-ICR mass spectra after standard addition of PEG in the range of 0 to 3.6 nmol L-1 to the extracted DOM of the blank sample. (C) Linear calibration curve of PEG standard after addition to blank sample. FT-ICR mass Figure 4.1.2: spectra of the negative electrospray ionization at the time points to of (A) artificial seawater and **(B)** natural Asterisks indicate seawater. inorganic contaminations. Inserts show a zoom into the region of

mass 325.0 to 325.2. In the negative mode inorganic contaminations suppressed the ionization of organic substances present in low amounts in the artificial seawater.

In van Krevelen diagrams, organic compounds are plotted based on their oxygen to carbon (O/C) and hydrogen to carbon (H/C) ratios. During the incubation in artificial seawater (from t0 to t2) the relative intensities of compounds with an O/C < 0.4 and H/C > 1.5decreased strongly, while the relative intensity of only few compounds increased (Figure 4.1.3 A). After growth of the bacteria (from t0 to t2) in artificial seawater. many compounds with an O/C < 0.4and H/C > 1.5 were not detected anymore. Most of the compounds that disappeared had molecular formulas containing nitrogen (Figure 4.1.3 B and C). No significant difference was found between the procedural blank of the artificial seawater and t0 or between t1 and t2 (blank and t0 before, t1 and t2 after growth).

Major changes in incubations with natural seawater during growth (from t0 to t2) were found in two clusters of compounds: (i) compounds with O/C < 0.4 and H/C < 1.0, and (ii) compounds with O/C > 0.7 and

HC > 1.25 (Figure 4.1.3 D, blue). Compounds of cluster (i) with low O/C and H/C ratios contained sulfur but no nitrogen (Figures 4.1.3 E and F, yellow). Compounds of cluster (ii) with high O/C and H/C ratios contained mainly nitrogen and sulfur (Figures 4.1.3 E and F, red).

Figure 4.1.3: Van Krevelen diagrams (O/C = oxygen tocarbon ratio and H/C = hydrogento carbon ratio of the molecular formulas of single molecules detected) showing the change in DOM composition from t0 to t2 in artificial (A-C) and natural seawater (D-F). (A+D). Changes in normalized relative intensities color-coded showing are decrease in blue, an increase in red and no significant change during incubation in grey. (B+C, D+F): Compounds containing no nitrogen and sulfur (purple), sulfur but no nitrogen (yellow), nitrogen but no sulfur (blue) and both nitrogen and sulfur (red) at to (B+E) and t2 (C+F). In artificial seawater the most notable decrease is found in the fraction of compounds containing high H/C and low O/C ratios and nitrogen but no sulfur. These compounds may correspond to detergents. In natural seawater a group of substances with high ratios of H/C and O/C (probably thio- and

aminosugars) containing mostly nitrogen and sulfur decreased. In addition, compounds with low H/C and O/C ratios (probably condensed hydrocarbons) containing only sulfur were also observed to decrease.

Glucose and ammonium addition experiments

Cell numbers in artificial seawater medium without glucose and ammonium were about

3 X 105 cells mL-1. The separate addition of glucose and ammonium did not lead to a strong increase in cell numbers, whereas the simultaneous addition of glucose and ammonium increased cell numbers to about 107 cells mL-1 (Figure 4.1.4).

Figure 4.1.4: Growth curves of Pseudovibrio sp. strain FO-BEG1 incubated in artificial seawater without the addition of a fixed carbon or nitrogen source or with addition of ammonium or Addition of glucose. each substance alone did not lead to an increase in cell numbers. When both (ammonium and glucose) were added at the same time, cell numbers increased significantly.

Biolog experiment

Pseudovibrio sp. FO-BEG1 cells pre-grown in artificial seawater medium were used to inoculate a biolog GN2 microplate

containing 95 different growth substrates. The bacteria showed activity after 8 to 14 days on the following substrates: Draffinose, D-trehalose, turanose, D-gluconic acid, D-glucosaminic acid, D-glucuronic acid, acetic acid, glucoronamide, L-glutamic acid, glycyl-L-glutamic acid, Lserine and D-glucose-6phosphate. No activity was observed on the remaining 84 substrates.

Discussion

In the present study, the heterotrophic Pseudovibrio sp. strain FO-BEG1 was grown either artificial in seawater medium with extremely low DOC concentrations or in natural seawater from an oligotrophic ocean (south Pacific, surface representing typical water) marine DOM. The bacterial growth was sustained by very low amounts of DOC in both incubation setups. However, growth in artificial seawater with only 0.06 mg DOC per liter seawater shows that bacterial growth can be sustained by even lower concentration as present in natural oligotrophic most which typically seawaters. contain less than 1 mg C L-1 (Schut et al., 1997; Hansell et al., 2009).

Impurities in oligotrophic media During the preparation of

oligotrophic medium, different potential contamination risks emerge. In our case, an inorganic contamination was introduced to the artificial seawater after the incubation during the solid phase extraction of DOM (SPE-DOM). This led to ion suppression of the organic compounds in the FT-ICR mass spectra in ESI negative mode. Consequently, it was not possible to analyze the DOM composition in that mode and we chose the positive mode instead. This problem does not occur in natural seawater samples, because the concentration of DOC is higher. We could show that the organic substances present in the artificial medium are detectable if the overall background of DOM is 10 to 100 times higher. This observation indicates that a specific concentration of organic matter has to be present to be detected by ESI FT-ICR-MS if inorganic substances are introduced in high amounts during extraction or ionize extremely well. In ESI positive mode, an organic contamination of the artificial seawater was observed. Two series of polyethylene glycol (PEG) oligomers were detected. As a potential source NaOH used for medium preparation was identified. Since PEGs ionize extremely well in ESI positive

mode, the peaks are much higher compared to most other peaks in the sample. Using the standard addition method (described in material and methods), the total amount of PEG contaminations was estimated to be 1000fold less than the total DOC concentration in artificial seawater, and thus represented only a very small fraction of the entire DOC contamination. These impurities analyzed in the artificial seawater medium were not detected in the SPE-DOM of natural seawater samples and thus did not affect the FT-ICR-MS analysis of natural seawater incubations. Growth and substrate use in artificial seawater artificial During growth in seawater under extremely oligotrophic conditions. Pseudovibrio sp. strain FO-BEG1 multiplied from about 20 cells mL-1 to 2 X 104 cells mL-1, even though the overall DOC of did amount not measurably decrease. Thus, the amount of compounds that were consumed was probably below detection limit (0.5 |imol C L-1). Based on the increase in cell numbers when grown with and ammonium glucose (supplementary material Table S.4.1 and Figure S.4.1), it was calculated that about 1 to 3 [imol C L-1 is needed for the observed

cell numbers as carbon and energy source. Apparently, the uptake of amino acids alone could sustain bacterial not growth because the initial amino acid concentration (0.13 |imol L-1) was already much lower than the required 1 to 3 |imol C L-1. During the initial growth phase, we found a decrease in dissolved free amino acids (DFAA) concentration concurrently with an increase in dissolved combined amino acids (DCAA), whereas the overall amino acid concentration (DFAA + DCAA) did not decrease (Table 4.1.1). Within the growth phase, the DFAA might have been used as precursors, e.g. for exo-enzymes, which lead in turn to an increase in the DCAA concentration, but no overall decrease in the amino acid concentration. During stationary phase, we found a slight decrease of total amino acids. This may suggest that amino acids were rather used as substrate for maintaining nongrowing cells. The compositional analysis of DOM with ESI FT-ICR-MS revealed a decrease of nitrogencontaining compounds during the initial growth phase (Figure 4.1.3 B and C). Inferring from molecular compositions their (high H/C, low O/C, Ncontaining), these substances were most likely detergents, such

as ampholytic amino oxides or betaines. Using this method we cannot quantify the amount of carbon corresponding to this decrease. In addition. а compound with a decreasing peak in the mass spectrum is not necessarily completely oxidized to CO2. Thus, we cannot ultimately clarify whether the use of these substrates alone explains the observed growth. Nevertheless, the preferential decrease of nitrogen-containing compounds suggests that these substances at least served as nitrogen source. This agrees with the observation that N2 fixation was not detectable. Growth and substrate use in natural seawater The overall concentration of amino acids in the natural seawater was already initially quite low and did not further decrease during the incubation. Thus, amino acids did not sustain growth or survival of cells. The compositional analysis of DOM showed a decrease of two groups of compounds. One of them was likely containing carbohydrate-like compounds with nitrogen and sulfur. These compounds are most likely thiosugars and/or aminosugars and may therefore have also served as nitrogen source. In addition, we observed a decrease in relative intensities of

compounds with low O/C and	
H/C ratios containing sulfur but	
no nitrogen. Compounds with	
low amounts of oxygen and	
hydrogen in comparison to	
carbon are typically condensed	
or aromatic hydrocarbons. Since	
it cannot be excluded that these	
compounds were lost abiotically,	
e.g. by absorption to the	
glassware, it needs to be further	
investigated if the bacteria	
indeed metabolized these	
complex molecules during	
growth. Notably, during growth	
of Pseudovibrio sp. strain FO-	
BEG1 in natural seawater, we	
observed a decrease of different	
groups of substances compared	
to artificial seawater and	
preferentially substances	
containing sulfur decreased.	
The use of multiple substrates	
The potential use of different	
substrates under oligotrophic	
conditions was shown by the	
biolog experiment. The bacteria	
were able to metabolize different	
types of organic compounds,	
such as sugars (e.g. D-raffinose	
and D-trehalose), amino acids	
(L-serine, glutamic acid),	
carboxylic acids (glucuronic	
acid, acetic acid) and amide	
(glucuronamide). These	
compound classes were also	
present as contaminations in the	
artificial seawater medium and	
decreased during growth. This is	
in agreement with studies on E.	

coli showing a broad potential to	
use different substrates after	
adaptation to carbon starvation	
(Ihssen and Egli, 2005).	
Even though the substances	
decreasing during growth, as	
revealed by ESI FT-ICR-MS,	
tended to cluster into certain	
groups with a specific ratio of	
O/C and H/C, the overall pattern	
showed a broad simultaneous	
use of many substrates both in	
artificial and natural seawater. In	
contrast to the biolog	
experiment, this does not show	
the potential to use a substrate,	
but the actual decrease of	
compounds present in original	
concentrations. Using different	
compounds simultaneously may	
enable bacteria to grow on very	
low concentrations of each of the	
different substrates	
(Lendenmann et al., 1996;	
Kovárová-Kovar and Egli,	
1998), if a substrate does not	
repress enzymes for another less	
efficient one (reviewed in Egli,	
2010). This strategy, together	
with the potential to use	
substrates, which are not present	
but may become available,	
enables bacteria to survive in babitata with a low and	
fluctuating supply of putrients	
as it is found in the oceans	
Conclusions	
The data presented in this study	
demonstrate that contaminations	
can arise from many different	

sources (e.g. chemicals, bottles, humans or plastics), which in turn might support growth of oligotrophic bacteria under conditions. Moreover. even under extremely oligotrophic conditions, the isolated bacteria were not in a resting state, but showed a moderate growth, even though nitrogen, carbon and energy sources were limiting factors at the same time. The investigated Pseudovibrio sp. FO-BEG1 uses many different substrates under types of nutrient-poor conditions as demonstrated by the FT-ICR-MS data (Figure 4.1.3). In our case, amino acids were not the primary substrate for growth, but rather a complex mixture of organic compounds, preferably containing nitrogen. Furthermore, we were able to show that ESI FT-ICR-MS is a strong tool to investigate bacterial growth under lownutrient conditions. Table S.4.1: Cell numbers of isolate Pseudovibrio strain FO-BEG1 derived from different amounts of carbon added to the medium. Carbon in form of glucose was added to а Pseudovibrio strain FO-BEG1 2 culture in different concentrations. As a negative control culture without а addition of carbon was used. To ensure carbon-dependent growth,
sp. strain FO-BEG1.	
Furthermore, we found that this	
bacterium, besides heterotrophic	
growth on organic-rich medium,	
is capable of growth under	
extreme nutrient deficiency in	
artificial and natural seawater.	
This observation inspired us to	
investigate whether we could	
isolate other facultative	
oligotrophs from overlaying	
water of Namibian sediment, an	
environment known to contain a	
large number of different	
sulfide- oxidizers belonging to	
the family Beggiatoaceae.	
Indeed, we succeeded to obtain	
14 new strains closely related to	
known marine bacteria, all of	
which were capable of growth	
under extreme nutrient	
deficiency. The potential of these	
isolates to support growth of the	
large sulfide-oxidizing bacteria	
can now be studied in culture-	
based experiments.	
Introduction	
Large bacteria, such as	
Beggiatoa spp. or filamentous	
cyanobacteria, often live	
together with heterotrophic	
prokaryotes and these	
associations seem to be the	
reason for the mability of axemic	
(Purton and Marita 1064)	
Cohon and December 1090;	
Dolingko at al. 1000; Marris at	
al 2008) Different reasons for	
al., 2008). Different reasons for	
mese interactions have been	

proposed, such as the recycling of Cacbon điôxít or the reduction of the oxygen concentration (Kuentzel, 1969; Paerl and Pinckney, 1996). It is known that Beggiatoa spp. typically lack the gene for catalase (Larkin and Strohl, 1983), but since aerobic respiration produces reactive oxygen species (ROS, Tapley et al., 1999) an efficient protection against such molecules is needed. Therefore, Beggiatoa spp. might depend on the catalase, which enzyme catalyzes the disproportionation of hydrogen peroxide to oxygen and water, or other protection of the associated systems heterotrophs against ROS. The positive effect of catalase and of heterotrophic accompanying bacteria on the growth of Beggiatoa filaments (Burton and Morita, 1964; Strohl and Larkin, 1978; Gude et al., 1981; Nelson et al., 1986b) and, furthermore, the accumulation of peroxides in cultures without catalase or accompanying bacteria was shown (Burton and Morita, 1964). Recently, we found that both Pseudovibrio sp. strain FO-BEG1 and Pseudovibrio denitrificans (DSM number 17465) support growth of the chemolithoautotrophic marine Beggiatoa sp. strain 35Flor (Chapter 3.1). Both bacterial strains are heterotrophic

organisms (Chapter 3.2, Shieh et	
al., 2004). Additionally, we have	
shown that the newly isolated	
Pseudovibrio sp. strain FO-	
BEG1 can grow under extremely	
oligotrophic conditions and its	
substrate use in pure artificial	
and natural seawater was studied	
in detail (Chapter 4.1).	
The aim of the present study was	
to isolate heterotrophic,	
facultatively oligotrophic	
bacteria from Namibian	
sediments, the habitat of large	
sulfide-oxidizers, to investigate	
how common facultative	
oligotrophy is among bacteria	
associated with large sulfide-	
oxidizers. Here, we report the	
successful isolation of 14	
facultatively oligotrophic	
bacteria from water overlaying	
Namibian sediments using a	
method relying on the change	
from oligotrophic to eutrophic	
growth conditions, called the	
CANgrow-method (changing	
availability of nutrients growth-	
method). In contrast to earlier	
methods for the isolation of	
marine bacteria, the artificial	
oligotrophic medium used here,	
is defined and contains much	
lower nutrient concentrations.	
Inree initial transfers strongly	
pre-select for bacteria, which can	
grow under extreme nutrient	
transform on matricest sich	
transfers on nutrient-rich agar	
plates select for facultatively	

oligotrophic bacteria and are	
used to obtain pure cultures.	
Finally, the ability of the isolates	
to grow oligotrophically is	
ensured by at least seven	
transfers in pure artificial	
seawater.	
Material and methods Samples	
The new bacterial strains were	
isolated from oceanic bottom	
water overlaving Namibian	
sediments that harbor different	
large sulfur bacteria (sample	
acquisition described in Salman	
et al., 2011). All samples were	
stored at 4°C. In addition to the	
new isolates, the Pseudovibrio	
denitrificans type strain (DSM	
number 17465) was purchased	
from the German culture	
collection DSMZ (Deutsche	
Sammlung von	
Mikroorganismen und	
Zellkulturen GmbH,	
Braunschweig, Germany) and	
cultivated under oligotrophic	
conditions.	
Growth media and cultivation	
conditions	
For cultivation and isolation, two	
different media were used, an	
oligotrophic and a eutrophic	
medium. The liquid, oligotrophic	
medium was composed as	
described above (Chapter 4.1),	
but prepared under synthetic air	
atmosphere (20% O2 in N2;	
H2O < 3 ppm-mol, CnHm < 0.1	
ppm-mol, CO < 1 ppm-mol,	
CO2 < 1 ppm-mol).	

Furthermore, bottles were filled	
only with 50 mL medium and the	
medium was not cleaned using	
solid phase extraction. This	
medium was used for all	
oligotrophic cultivation	
experiments. The solid,	
eutrophic medium was	
composed as described above	
(Chapter 4.1, Methods section	
"Biolog experiment"). All	
incubations in oligotrophic and	
eutrophic media were performed	
without shaking at 28°C in the	
dark.	
CANgrow-method (changing	
availability of nutrients growth-	
method)	
For isolation, 50 mL of	
oligotrophic medium were	
inoculated with 100 iL seawater	
sample (from off shore	
Namibia). The cultures were	
transferred (100 iL enrichment	
in 50 mL fresh medium) at least	
three times in oligotrophic	
medium with incubation periods	
between the transfers of at least	
one week. Aliquots of the	
oligotrophic enrichments were	
then plated on eutrophic, solid	
medium and single colonies	
were transferred three times on	
eutrophic medium. Finally, at	
least another seven transfers	
(100 iL culture in 50 mL fresh	
medium) were performed in	
liquid, oligotrophic medium	
(Figure 4.2.1).	
Sequencing of 16S rDNA genes	

Eutrophically grown colonies were picked and directly transferred to a polymerase chain
were picked and directly transferred to a polymerase chain
transferred to a polymerase chain
reaction (PCR) mix containing
1x PCR MasterMix (Promega,
Mannheim, Germany) and 1
imol L-1 of each primer (GM3F
and GM4R in Muyzer et al.,
1995). The PCR program applied
was as follows: initial
denaturation at 95°C for 5
minutes, 32 cycles of 95°C for
1 minute, 50° C for 30
seconds and 72°C for 90 seconds
followed by a final elongation at
72°C for 7 minutes. PCR
products were cloned using the
TOPO TA Cloning® Kit for
Sequencing (Invitrogen,
Karlsruhe, Germany) according
to manufacture's instructions.
Sequencing of the cloned inserts
was performed using the Big
Dye Cycle Sequencing Kit
(Applied Biosystems, Carlsbad,
CA, USA) and sequences were
analyzed on an ABI Genetic
Analyzer 3130x (Applied
Biosystems, Carlsbad, CA,
USA). Nearly full-length
Sequences were assembled with
peakage DNA Ster Medicen
WILLISA) and denosited in the
DDBI/FMBI /GenBank
databases under accession
numbers FR716535 to
FR716549 Phylogenetic
analysis of the 16S rDNA

sequences was performed using	
the ARB software package	
(Ludwig et al., 2004) and release	
102 of the SILVA SSURef	
database (Pruesse et al., 2007).	
Tree reconstruction with	
maximum likelihood and	
neighbour joining methods was	
performed using 0, 30 and 50%	
positional conservatory filters	
that exclude highly variable	
regions. Finally, a consensus tree	
based on the different	
reconstruction methods was	
built. A total number of 102	
nearly full-length sequences was	
used for initial calculation to	
stabilize tree topology.	
Displayed in the final tree	
(Figure 4.2.2) are the sequences	
of the 15 isolates grouped with	
their closest relatives.	
Cell counts	
Cell counts were performed as	
described in Chapter 4.1.	
Measurement of dissolved	
organic carbon (DOC)	
Dissolved organic carbon (DOC)	
was measured in the oligotrophic	
medium using a Shimadzu TOC-	
VCPH total organic carbon	
analyzer (Shimadzu, Kyoto,	
Japan). Acidification of samples	
was performed with $1\% \text{ v/v} 2$	
mol L-1 HCl followed by	
sparging with synthetic air in	
order to remove inorganic	
carbon. The detection limit of	
the method was 5 imol C L-1	
(0.06 mg C L-1). The analytical	

accuracy was confirmed with reference material (deep Atlantic	
seawater) and low carbon water	
from the consensus reference	
materials program (D.A.	
Hansell, University of Miami,	
Coral Gables, FL, USA).	
Results	
Isolation of facultatively	
oligotrophic bacteria	
Applying the CANgrow-method,	
which favors facultatively	
oligotrophic bacteria (Figure	
4.2.1), we obtained 14 isolates	
of marine bacteria that were able	
to adapt from oligotrophic to	
eutrophic growth conditions and	
vice versa within 3 to 5 days. We	
were able to obtain pure cultures	
of these strains by transferring	
single colonies from organic-rich	
agar plates and could show that	
these colonies were able to grow	
oligotrophically by at least seven	
transfers in pure artificial	
seawater.	
Changing availability of	
nutrients growth- method	
(CANgrow-method)	
Figure 4.2.1: Comparison of	
strategies for the isolation of	
oligotrophic bacteria. Three	
different methods for the	
isolation of obligately or	
facultatively oligotrophic	
bacteria are compared with the	
newly developed CANgrow-	
method (Changing availability of	

nutrients growth- method).	
Bacteria from three different	
phyla were isolated with the	
CANgrow-method. Phylogenetic	
relations are shown in a 16S	
rDNA sequence tree including	
the Pseudovibrio sp. strain FO-	
BEG1 showing > 99.5%	
sequence identity to the	
Pseudovibrio denitrificans type	
strain (Figure 4.2.2). Except for	
two isolates, which were closely	
related to Arthrobacter spp.	
(Actinobacteria) on 16S rDNA	
level (99.8 to 99.9% identity to	
closest related strain), all isolates	
were members of the	
Proteobacteria. The remaining	
12 isolates were members of the	
Gammaproteobacteria, two of	
them grouping with Kangiella	
spp. (96.4% identity to closest	
related strain) and ten	
withMarinobacter spp. (98.7 to	
100% identity to closest related	
strain).	
Figure 4.2.2: Phylogenetic trees	
based on a total number of 102	
nearly full-length sequences	
were calculated with maximum	
likelihood and neighbor joining	
methods using different	
positional conservatory filters.	
The displayed tree is an excerpt	
trom the consensus tree that was	
interred based on the different	
reconstruction approaches. The	
14 new isolates and strain FO-	
BEGI are grouped with the most	
closely related type strains.	

Isolated strains listed in one line	
feature an identical 16S rDNA	
sequence, whereas isolated	
strains listed directly one below	
the other are 99.6 to 99.9%	
identical in their 16S rDNA	
sequence. The isolates FO-	
NAM13, 14 were only able to	
grow for six transfers under	
oligotrophic conditions and are	
therefore marked grey in the	
tree.	
Oligotrophic growth	
The artificial seawater contained	
a DOC concentration of 0.18 \pm	
0.06 mg C L-1 (15 \pm 5 imol C	
L-1). Growth curves in	
oligotrophic artificial seawater	
medium (Figure 4.2.3) were	
obtained for one isolate from	
each phylogenetic group	
(Actinobacteria, Alpha- and	
Gammaproteo- bacteria). We	
observed a clear increase in cell	
numbers starting from 4 to 20	
cells mL-1 to a final density of	
104 to 105 cells mL-1. The	
proteobacterial isolates showed	
growth after 2 days and reached	
a stationary phase after 5 to 7	
days of incubation. Both	
actinobacterial isolates were	
characterized by delayed growth	
that was detectable after 12 days.	
Here, the stationary phase was	
reached after about 20 days of	
incubation. Moreover, all	
isolated Kangially staring	
isolated Kanglella strains were	
able to grow after at least seven	

transfers in the oligotrophic	
seawater medium. The two	
isolates closely related to	
Kangiella spp. were not able to	
grow after more than six	
transfers under oligotrophic	
conditions. The isolates closely	
related to Marinobacter spp.	
reached the highest final cell	
numbers (Figure 4.2.3 D),	
whereas the actinobacterial	
isolates showed lowest final cell	
densities (Figure 4.2.3 C).	
Furthermore, we observed	
growth under oligotrophic	
conditions for the type strain	
Pseudovibrio denitrificans (DSM	
number 17465). The growth	
curve of this strain (Figure 4.2.3	
B) showed the same pattern as	
the Pseudovibrio sp. FO-BEG1,	
which is currently growing in the	
26th oligotrophic transfer in	
highly purified artificial	
seawater.	
Figure 4.2.5: Offgotrophic	
BEG1 (Alphaprobtophactoria	
related to	
Pseudovibrio spp.) (B)	
Pseudovibrio denitrificans type	
strain (Alphaproteobacteria), (C)	
isolate FO-NAM2	
(Actinobacteria, related to	
Arthrobacter spp.) and (D)	
isolate FO-NAM6	
(Gammaproteobacteria, related	
to Marinobacter spp.).	
Discussion	
Isolation of facultatively	

oligotrophic bacteria with the	
CANgrow-method	
Each strategy that is applied for	
the isolation of bacteria selects	
for a specific physiology and	
metabolism. Most approaches	
used recently for the isolation of	
oligotrophic bacteria are based	
on the dilution to extinction	
method (Button et al., 1993;	
Connon and Giovannoni, 2002)	
and thereby select for the most	
abundant microorganisms. In	
contrast, the CANgrow-method	
favors bacteria, which might not	
have been particularly abundant	
in the original inoculum, but can	
adapt fast to changes in nutrient	
availability. Previous studies	
have shown that many bacteria	
isolated under oligotrophic	
conditions can adapt to nutrient-	
rich media (Yanagita et al.,	
1977; MacDonell and Hood,	
1982; Carlucci et al., 1986).	
Also, the single-cell	
encapsulation method (Zengler	
et al., 2002) is based on	
autrophic growth conditions	
This cultivation approach is	
similar to ours (Figure 4.2.1) but	
we used artificial seawater of	
very low DOC concentration	
rather than natural seawater. The	
measured DOC concentration of	
0.18 mg C L-1 is two to five	
times lower than in natural	
seawater (Schut et al., 1997;	
Hansell et al., 2009).	

Nevertheless, we are certain to observe true growth under these extremely oligotrophic conditions, since we performed least seven transfers in at purified artificial seawater with each of the isolated strains and 26 transfers for Pseudovibrio sp. FO-BEG1, for which we also identified growth substrates under oligotrophic conditions (Chapter 4.1). The initial cell number after each transfer was 4 to 20 cells mL-1. Thus, 9 to 15 divisions must have occurred between two consecutive transfers to account for a final cell number of 104 to 105 cells mL-1 as observed at the end of the growth phase. This accounts for 60 to 100 divisions during a total of 7 incubations. Therefore, we conclude that all isolates are viable under oligotrophic conditions by the definition of Button et al. (1993), who characterize organisms as viable after having performed 13 divisions which we observe already after 1 to 2 transfers. Diverse phylogeny of oligotrophic facultatively bacteria The isolated bacterial strains belong to different phylogenetic groups, namely Alphaproteobacteria, Gammaproteobacteria and Actinobacteria. Growth under oligotrophic conditions as observed for the isolates FO-

NAM13 and FO-NAM14	
(related to Kangiella spp.), has	
so far never been described for	
any member of the genus	
Kangiella. Long-term starvation	
and survival but not growth in	
the absence of external nutrients	
has previously been reported for	
Arthrobacter spp. and was	
proposed to be fueled by	
internally stored reserve material	
(Zevenhuizen, 1966). In our	
study, isolates FO-NAM1, FO-	
NAM2 (related to Arthrobacter	
spp.) were transferred in	
oligotrophic medium more than	
seven times and active growth	
was always observed. Hence, we	
assume that the cells gained	
energy and produced biomass	
from an external source, since	
we determined growth and not	
only survival. Bacteria belonging	
to the genus Marinobacter are	
known to be diverse in	
physiology (e.g. Gauthier et al.,	
1992; Huu et al., 1999).	
Substrate uptake under low	
nutrient conditions was shown	
for Marino- bacter arcticus	
(Button et al., 2004), but	
oligotrophic growth was not	
studied in detail. In contrast, the	
isolates FO-NAM3 to FO-	
NAM12 (related to Marinobacter	
spp.) actively grow under	
nutrient deficiency.	
Cell numbers of the isolated	
strains growing under	
oligotrophic conditions differed	

between the phylogenetic	
groups. The cell numbers of	
isolates related to Marinobacter	
spp. were higher than cell	
numbers of the other isolates,	
whereas the isolates related to	
Kangiella spp. did not grow for	
more than six transfers. This	
suggests that the different	
bacteria vary in their capabilities	
of adapting to oligotrophic	
growth conditions or that the	
present organic and inorganic	
material can be used differently	
among the isolates. This might	
be due to the presence of	
different metabolic pathways and	
a different number and type of	
high affinity transporters	
necessary for scavenging	
nutrients at such low	
concentrations. Taken together,	
our data support earlier findings	
(Yanagita et al., 1977;	
MacDonell and Hood, 1982;	
Carlucci et al., 1986) that the	
ability to switch between	
extreme nutrient deficiency and	
affluence of substrate is not	
unusual or restricted to a certain	
phylogenetic group, even if the	
level of adaptation might differ.	
Therefore, we propose that the	
ability to grow under extreme	
substrate limitation is much	
more widespread among known	
heterotrophic bacteria than	
currently recognized.	
As expected, the heterotrophic	
bacteria isolated from the habitat	

of large sulfide-oxidizers are	
phylogenetically diverse. It was	
possible to isolate bacteria	
following a similar metabolic	
strategy - facultative	
oligotrophy. If these bacteria are	
associated with sulfide-oxidizers,	
if their metabolic activity is	
somehow related to the presence	
or absence of the lithothrophs or	
whether they can support growth	
of the large sulfur bacteria by	
scavenging ROS needs to be	
further investigated.	
~Sir William Lawrence Bragg	
(1890-1971)	
Chapter 5 Concluding remarks	
and outlook	
The findings of this thesis	
contribute to different topics	
ranging from migration behavior	
of mat-forming sulfur bacteria	
via associations between	
different bacteria to the lower	
limits of bacterial growth.	
Nevertheless, all these different	
aspects are linked to each other.	
The growth of Beggiatoa sp.	
filaments, for which we	
discovered an unusual migration	
behavior (Chapter 2), depends on	
(Charter 2) which is earching of	
(Chapter 5), which is capable of	
growth under extreme nutrient deficiency (Chapter 4) This	
chapter (Chapter 5) connects all	
these different espects including	
nreliminary data which are not	
presented in the previous	
chapters and considers the	

obtained results in a broader context. Furthermore, a detailed discussion of special proceedings precautions during and performed experiments is given. Finally, this chapter ends with an outlook for future research concerning the discussed topics. Associations between small heterotrophic and larger bacteria Axenic cultivation of large marine Beggiatoa spp. under chemolithoautotrophic conditions is difficult and only rarely successful (Nelson and Jannasch, 1983; Nelson et al., 1986a). In this thesis. а successful and stable cultivation of the marine chemolithoautotrophic Beggiatoa sp. strain 35Flor (6 |im in diameter) is described. This Beggiatoa strain grows solely in the presence of an accompanying heterotrophic organism, the Pseudovibrio sp. strain FO-BEG1 (Chapters 2 and 3). We propose that the accompanying bacterium protects the Beggiatoa sp. from oxidative stress because we have shown that the genome of the accompanying organism possesses more than 20 genes for the enzymes catalase, superoxide dismutase and peroxidase (Chapter 3.2), whereas sulfideoxidizing bacteria of the genus Beggiatoa typically do not possess the gene for the enzyme catalase (reviewed in Larkin and

Strohl, 1983).	
Similar to large sulfide-	
oxidizers, also large marine	
cyanobacteria can often be found	
associated with small	
heterotrophic bacteria and it is	
difficult to sustain axenic	
cultures (Palinska et al., 1999;	
Morris et al., 2008). The	
association of small	
heterotrophic bacteria with larger	
bacteria, such as Beggiatoa spp.	
or cyanobacteria in microbial	
mats is a common observation	
(Cohen and Rosenberg, 1989;	
van Gemerden, 1993). The	
complex interactions between	
cyanobacteria and heterotrophic	
bacteria have been studied and	
different reasons for their	
interactions have been proposed.	
These reasons include recycling	
of Cacbon điôxít needed by the	
cyanobacteria (Kuentzel, 1969),	
production of growth factors and	
formation of anoxic microniches	
due to aerobic respiration (Paerl	
and Pinckney, 1996).	
Interestingly, for cyanobacteria	
of the genus Prochlorococcus, it	
was also proposed that the	
function of the heterotrophs is to	
scavenge reactive oxygen	
species (ROS) because the	
Prochlorococcus spp. themselves	
have no gene encoding for a	
catalase or peroxidase (Morris et	
al., 2008). Furthermore, a mutant	
of the accompanying heterotroph	
lacking the gene for catalase was	

found to not support growth of the cyanobacteria, whereas the addition of catalase had a positive effect on their growth (Morris et al., 2008). These observations concerning the association between cyanobacteria and accompanying heterotrophic bacteria point in the same direction as the observations presented here on the association between Beggiatoa sp. and Pseudovibrio sp. (Chapter 3). It suggests that the protection system of the large bacteria from ROS might be less efficient than the ones of smaller heterotrophic bacteria. Cyanobacteria and Beggiatoa spp. are often found to share one habitat as for example in microbial mats (van Gemerden, 1993) or in biofilms associated with the black band disease of scleractinian corals (Richardson, 1996). Therefore. in these common habitats they might also live together with similar types of heterotrophic bacteria. The with bacteria associated cvanobacteria belong to a diverse range of phylogenetic groups, including Actinobacteria. Bacteroidetes. Gamma-Alpha-, Beta-, and Deltaproteobacteria (Salomon et al., 2003; Kolmonen et al., 2004; Hube et al., 2009). The isolation phylogenetically different of bacteria from the habitat of large

sulfide-oxidizers (Chapter 4.2)	
indicates that also the large	
sulfide- oxidizers are not	
restricted to the association with	
bacteria of one phylogenetic	
group. It seems more likely that	
the large bacteria depend on	
specialized functions performed	
by certain types of the associated	
bacteria rather than the presence	
of a specific phylogenetic group.	
Very recently, a metagenomic	
sequence analysis of bacterial	
communities associated with the	
green macroalgae Ulva australis	
revealed that not the phylogeny	
of the associated bacteria but the	
function of their genes was	
correlated with the associations	
(Burke et al., 2011).	
Consequently, it was proposed	
that the functional genes rather	
than the 16S rDNA genes are	
more appropriate to investigate	
associations in microbial	
communities (Burke et al.,	
2011).	
Toxicity factors and migration	
behavior of Beggiatoa filaments	
The growth of Beggiatoa spp.	
depends on oxygen and sulfide,	
but both substances can also be	
harmful to the bacteria if	
concentrations exceed a critical	
uiresnoid (winogradsky, 188/;	
relatives of Paggistan are	
balanging to the conve	
Thiomargarita can be found in	
ulfidio sodimente with sulfide	
sumaic seaments with sumde	

concentrations of 100 to 800	
imol L-1 (Schulz et al., 1999) or	
even up to 22 mmol L-1	
(Bruchert et al., 2003).	
Moreover, these bacteria can	
also tolerate atmospheric oxygen	
levels while being exposed to	
lower sulfide concentrations (0	
to 100 imol L-1) at a pH of 7.3	
(Schulz et al., 1999; Schulz and	
de Beer, 2002). However,	
Thiomargarita spp. cells are not	
as motile as Beggiatoa spp. and	
as a consequence they can not	
position themselves in the	
transition zone of oxygen and	
sulfide. Instead, the cells wait for	
resuspension of the sediment to	
get into contact with oxygenated,	
nitrate-containing seawater	
(Schulz et al., 1999).	
In contrast, Beggiatoa filaments	
are motile and built up mats	
between the opposing gradients	
of oxygen and sulfide	
(Winogradsky, 1887; Keil, 1912;	
J0rgensen, 1977; Nelson et al.,	
1982; Nelson and Jannasch,	
1983). Consequently, Beggiatoa	
filaments usually get into contact	
with oxygen and sulfide at the	
same time, since they consume	
the two gases, they lower the	
concentrations and steepen the	
gradients (incison et al., 1986a).	
thickness of the Descience and	
unckness of the Beggiatoa mat,	
direct contect with concerned	
unect contact with oxygen and	
sumde at the same time (Nelson	

et al., 1986b). Taken this into account, the results presented in this thesis (Chapter 2.1) suggest that sulfide is probably more harmful to the cells under oxic conditions because the aerobic sulfide oxidation leads to a decrease in pH (Winogradsky, 1887) and as a consequence more sulfide outside the cells is present in form of H2S. In the presented experiments (Chapter 2.1) we measured a pH of 6.5 within the mat, leading to about 70% of the sulfide being present in form of H2S (compared to only about 30% present as H2S at pH 7.3). This uncharged, harmful gas can easily diffuse into the cells where it can act as a strong reductant and binds to iron in cytochromes, by this blocking the cellular respiration. Thus, the bacteria probably have to perform sulfide oxidation to detoxify the inside of the cells. At high sulfide fluxes the cells obviously accumulate large amounts of storage compounds during this process and might eventually burst. To prevent this, the bacteria have to dispose of the internal storage compounds. In the anoxic regions the pH is higher and sulfide predominantly occurs in form of HS- which can not diffuse into the cells and might only get inside via ion channels or transport systems. In this thesis (Chapter 2.1), a

new strategy to cope with high sulfide fluxes is proposed. The bacteria actively migrate into anoxic regions with high sulfide concentrations. Here, the aerobic sulfide oxidation is stopped and with this also sulfur deposition. The bacteria can then reduce the intracellular sulfur with internal PHA to form sulfide. This strategy represents a novel explanation for the presence of Beggiatoa filaments in anaerobic habitats and shows that filaments actively migrate into anoxic, regions. sulfidic Previously, downwards migrations were typically observed in habitats containing nitrate and there the anaerobic sulfide oxidation with nitrate lowered the diffusion zone of sulfide and separated the oxygen and sulfide gradients over up to a few centimeters (MuBmann et al., 2003; Sayama et al., 2005; Hinck et al., 2007; Preisler et al., 2007). Although Beggiatoa spp. also require oxygen for growth (unless an alternative electron acceptor is present) they show phobic reactions to higher (above 5% air saturation) oxygen (Winogradsky, concentrations 1887: MOller et al., 1985). During aerobic sulfide oxidation the production of oxygen radicals and. moreover, chemiluminescence was shown to occur (Tapley et al., 1999). As

mentioned above, we propose that the Beggiatoa sp. 35Flor the accompanying requires organism to protect themselves against reactive oxygen species (Chapter 3.1). However. no correlation between the catalase activity heterotrophic, of associated cells and the beneficial effect of their cyanobacteria presence on (Prochlorococcus sp.) was found (Morris et al., 2008). In fact, the heterotroph with the lowest catalase activity was the only strain able to support growth of all studied cyanobacteria. Consequently, the dependency of the large bacteria on small heterotrophic bacteria can not be completely explained by their possession of a catalase enzyme. During our studies on the coculture of Beggiatoa sp. and Pseudovibrio sp., the possibility that nitric oxide (NO) might be involved in the reaction counteracting oxidative stress arose. In oxygen-sulfide gradient co-cultures with high sulfide concentrations, the NO signal in Pseudovibrio cells, stained with a copper-based fluorescent probe (CuFL, Lim et al., 2006), was higher compared cells to exposed to a low sulfide flux (Figure 5.1). This increase in NO signal was also inducible when hydrogen peroxide (H2O2) was added to co-cultures with a low

sulfide flux or to pure cultures of	
the isolated Pseudovibrio sp.	
(growing in seawater medium	
containing glucose and	
ammonia). Under both	
conditions, the enhanced signal	
was visible in the interior of the	
cells and not in the surrounding	
medium The used dve is	
specific for NO and no	
interaction with H2O2 or other	
reactive oxygen and nitrogen	
species, such as HNO, NO2	
NO3- and ONOO-, could be	
detected (Lim et al., 2006).	
Figure 5.1: Nitric oxide staining	
(copper-based fluorescent probe)	
of Pseudovibrio sp. FO-BEG1	
cells in coculture with Beggiatoa	
sp. 35Flor at high and low	
sulfide flux (12.6 and 50.4 mmol	
m 2 d 1, respectively) and in	
Pseudovibrio sp. FO-BEG1 pure	
cultures. White bars show	
measurements without the	
addition of hydrogen per-oxide	
and grey bars show those with	
0.35% H2O2 added.	
(preliminary data, imaging	
performed together with M.	
Beutler)	
NO is known to protect against	
oxidative stress in other bacteria.	
In Bacillus subtilis, the addition	
of NO has been shown to lead to	
an increase in resistance against	
H2O2 by 100fold (Gusarov and	
Nudler, 2005). The enzymes of	
the group nitric oxide synthases	
(NOS) can produce NO and	

citrulline from L-arginine and oxygen and are typically known from eukaryotes (Alderton et al., 2001). However, recently genes encoding for NOS-like enzymes were found also in different gram-positive and some gramnegative bacteria, and also the NOS-dependent NO production could be shown (Adak et al., 2002a; Adak et al., 2002b; Gusarov and Nudler. 2005: Agapie et al., 2009; Schreiber et al., 2011). Interestingly, we found NOSrelated domains (Filippovich, 2010) in the genome of the investigated Pseudovibrio sp. FO-BEG1 (Schwedt et al.. unpublished data). A small domain of yet unknown function is followed by an amine oxidase domain (known to oxidize Lamino acids) and а flavodoxin/nitric oxide synthase domain in the genome sequence. This opens up the possibility that production NO might be involved in the reaction to ROS in the investigated Pseudovibrio strain FO-BEG1. sp. The production of NO as a protective measure against oxidative stress in Bacillus subtilis cells leads to an enhanced catalase activity, which was shown by comparison of wild type to Anos deletion mutants (Gusarov and Nudler, 2005). In that study, the bacteria were cultivated in a complex

medium with yeast extract	
containing free amino acids. In	
the pure culture experiments	
presented here, the medium	
contained ammonia, as the sole	
nitrogen source, which could	
have potentially been used to	
produce NO.	
In our co-culture experiments	
together with Beggiatoa sp., no	
fixed nitrogen source was	
present, but the investigated	
Beggiatoa sp. are able to fix N2	
(Henze, 2005). The genome of	
the accompanying organism does	
not contain any gene encoding	
for a nitrogenase enzyme	
(Schwedt et al, unpublished	
data). The transfer of fixed	
nitrogen sources from	
cyanobacteria to associated	
bacteria is a common	
observation (Paerl, 1984). It may	
well be that also the Beggiatoa	
sp. transfer fixed nitrogen to the	
accompanying bacteria.	
Nevertheless, taking into	
consideration that dyes can	
unspecifically bind to different	
compounds and that the	
production of NO in our study	
was not proven by direct	
measurements, these	
considerations remain	
speculative and await further	
investigation (see outlook).	
Apart from chemical substances,	
such as oxygen and sulfide, also	
light is known to be a potential	
cause of phobic migration	

reactions of Beggiatoa filaments (Winogradsky, 1887; Nelson and Castenholz, 1982; Moller et al., 1985). The Beggiatoa sp. that we investigated showed an unusual reaction to blue/green light. Application of a blue or green light source (intensity: 67 |iE m-2 s-1) above or below the culture tube induced an immediate downwards movement of a subpopulation of filaments into the anoxic part of the culture tube when cultivated under a high sulfide flux (Chapter 2.2). The downward movement also occurred in the dark, but solely in cultures where a mat at the oxic-anoxic transition had already been established for about 10 days. The lower subpopulation was established 2 to 3 days after the downwards migration started (Chapter 2.1). Applying a blue or green light source in close proximity to the culture tube induced and also enhanced this filament movement and within a few hours the lower subpopulation was observed (Chapter 2.2). chemiluminescence Because occurs during chemical sulfide oxidation (Tapley et al., 1999) at the transition between oxygen and sulfide, it can be speculated that light at low intensities might be involved in the migration and/or mat formation processes of Beggiatoa filaments, but this

remains to be studied in the	
future (see outlook).	
The lower limits of bacterial	
growth	
In contrast to the large Beggiatoa	
filaments, most bacterial cells	
are not visible with the naked	
eye. However, bacterial growth	
can lead to macroscopically	
visible colonies on nutrient-rich	
agar plates or cause turbidity in	
nutrient-rich liquid media due to	
high cell densities, whereas	
under nutrient limitation cell	
densities will be low and the	
small bacterial cells might not	
cause turbidity. Therefore, the	
build-up of bacterial biomass in	
liquid low-nutrient media has to	
be quantified in a different way	
than optical turbidity	
measurements. Although, there	
might be no measurable growth,	
the cells might still be	
metabolically active. This is due	
to the fact that there is a	
difference between biomass	
production and activity of	
bacterial cells. Although the	
consumption of substrate is	
and build up biomass the	
opposite is not the case as calls	
do not necessarily grow while	
utilizing substrate (del Giorgio	
and Cole, 1998) Therefore the	
formation of biomass. called	
bacterial production (BP) has to	
be separated from the	
consumption of substrate, called	

bacterial respiration (BR). The	
bacterial growth efficiency	
(BGE) is defined as the quantity	
of bacterial biomass resulting	
from a certain amount of	
substrate respired (del Giorgio	
and Cole, 1998). The substrate is	
used by the bacteria for catabolic	
and anabolic purposes generating	
ATP (Adenosine-5'- triposphate)	
and cell biomass, respectively.	
The BGE can be determined by	
isotope-labeling techniques (BR	
and BP), rates of protein or DNA	
synthesis (BP), cell counts (BP),	
oxygen consumption (BR),	
Cacbon diôxít production (BR)	
and changes in DOC and POC	
(BR and BP) (del Giorgio and	
Cole, 1998 and references	
therein).	
Under oligotrophic conditions,	
the concentrations of substrates	
and cell numbers are extremely	
low. Therefore, most of these	
methods may not be sensitive	
enough and measured values are	
close to or below the limit of	
detection. Thus, new routines	
and methods have to be	
developed or methods have to be	
refined to be suitable for	
studying bacterial growth under	
extreme nutrient deficiency.	
Classical dissolved organic	
carbon (DOC) measurements,	
which are used as a parameter	
for the amount of dissolved	
organic matter (DOM) in	
environments with a low amount	

of nutrients, have a detection	
limit of about 0.5 imol C L-1	
(0.006 mg C L-1). However, the	
observed cell numbers in our	
medium (Chapter 4) are so	
extremely low that about 1 imol	
L-1 of carbon would be enough	
to explain the observed growth.	
Consequently, the classical	
method might not provide	
sufficient sensitivity to detect	
potential small changes in DOC.	
The results presented in this	
thesis show that electospray	
ionization Fourier transform ion	
cyclotron resonance mass	
spectrometry (ESI FT-ICR-MS)	
provides sufficient resolution	
and can be used to study	
bacterial growth under	
oligotrophic conditions.	
Furthermore, this technique	
gives information on both	
potential fixed carbon and	
nitrogen sources of the bacteria.	
Combined with the measurement	
of amino acids by high	
performance liquid	
chromatography (HPLC) and	
isotope-labeling techniques,	
bacterial growth in oligotrophic	
seawater can be studied in detail.	
However, this technique does	
generally not give quantitative	
information and as a	
consequence respiration rates	
under oligotrophic conditions	
still remain unknown.	
The risk of impurities	
Even though no electron donor is	

added oligotrophic to an medium. there can still be impurities present that might support growth and lead to the formation of biomass and/or metabolic activity of the cells (Chapter 4). Studying bacterial growth under nutrient-poor conditions is challenging, since many different contaminations. such as macronutrients, trace elements or energy sources can Accordingly, occur. when of studying the physiology bacteria growing under oligotrophic conditions, it is crucial to keep the medium and equipment contamination-free for the mandatory substances for growth. Amino acids represent a serious contamination risk for Therefore. seawater samples. number there are a of precautions that have to be taken, such as working with gloves, combustion of glassware, avoidance of dust in the working room (working in laminar flow hood) and use of chemicals of available highest quality (Dittmar et al., 2009). Also, during the measurements of quantity and composition of typically DOM all used equipment is pre-combusted if possible. All these precautions applied during were the preparation of the oligotrophic seawater medium and all further analyses presented in Chapter

4.1 of this thesis.	
Furthermore, the medium might	
become contaminated with trace	
elements, which would probably	
not resemble a potential energy	
source but could be decisive for	
growth or no growth of	
microorganisms. To avoid the	
contamination with trace	
elements, equipment is usually	
washed with HNO3- (e.g.	
Fitzwater et al., 1982), which,	
however, represents an easily	
utilizable nitrogen source. For	
the experiments presented in this	
thesis (Chapter 4), a fixed	
nitrogen source was considered	
as worse contamination than	
trace elements, and the	
equipment was not washed with	
HNO3	
In spite of all precautions, it is	
still extremely difficult to	
prepare a seawater medium	
without any contaminations.	
However, if the contaminating	
substance is not used by the	
bacteria during growth, such as	
the PEG contamination in this	
study (Chapter 4.1), it might not	
disturb or influence further	
physiological analysis. The	
contamination can even be used	
to normalize other peaks in the	
high and consistent (as the DEC	
night and consistent (as the PEG	
peaks in this study, Chapter 4.1).	
racultative ongotrophy	
alignmention to growth under	
ongotrophic conditions, the	

investigated Pseudovibrio sp.	
FO- BEG1 (Chapter 4) is	
capable of growing under	
eutrophic conditions as well and	
can switch within days from one	
trophic state to the other. Under	
oligotrophic conditions, the	
bacterial growth efficiency is	
typically very low and varies	
with the supply of nutrients (del	
Giorgio and Cole, 1998).	
Furthermore, the investigated	
bacteria are limited in carbon,	
nitrogen and energy at the same	
time (Chapter 4.1).	
Consequently, they are supposed	
to have high maintenance energy	
costs to maintain crucial	
transport systems and enzymes	
prepared (del Giorgio and Cole,	
1998). With increasing nutrient	
supply, probably also the	
bacterial growth efficiency	
increases because the bacteria	
can exhibit higher growth rates	
and produce only enzymes	
necessary for the substrates	
available (reviewed in del	
Giorgio and Cole, 1998).	
Facultatively oligotrophic	
bacteria have to switch between	
oligotrophic and eutrophic	
growth conditions and as a	
consequence the cells have to	
switch also between both	
strategies for growth to adapt to	
me actual amount of substrates	
The variation in putricat	
availability is common in natural	
availability is common in natural	

environments such as the open
ocean. Bacteria attached to
marine snow particles can
exhibit very high growth rates
(Alldredge et al., 1986;
Alldredge and Gotschalk, 1990;
Smith et al., 1992; Azam and
Long, 2001: Ki0rboe and
Jackson, 2001), while free-living
bacteria in the open ocean are
restricted in nutrients and
consequently their growth rates
are low or they even starve
(Boylen and Ensign 1970:
Novitsky and Morita 1076.
Δ zam and Hodson 1077.
Novitsky and Morita 1077.
Tabor and Neihof 1082. Ishida
10001 and $1000000000000000000000000000000000000$
oligotrophic bostoric correction
fost to putriant offluence of
last to nutrient affluence of
deficiency, while they have to
up- or down-regulate internal
pathways of anabolism and
catabolism. The investigated
facultatively oligotrophic
Pseudovibrio sp. FO-BEG1 is
highly versatile with respect to
its energy gain (Chapter 3.2 and
Chapter 4.1). This feature makes
the bacteria flexible and they are,
moreover, capable to interact
with other prokaryotes or
possibly even eukaryotes
(Chapter 3.2).
Already 30 years ago, it was
suspected that two types of
oligotrophic bacteria exist
(Ishida and Kadota, 1981): 1.
organisms, which disappear with
increasing man-made

eutrophication and 2. organisms,
which can adapt fast to man-
made eutrophication. In this
thesis bacteria were not isolated
from the oligotrophic open
ocean, but from water directly
overlaying marine sediments
(Chapter 4.2). All of the isolated
strains were able to adapt fast to
the nutrient deficiency of the
initial isolation medium. The
observation that facultatively
oligotrophic bacteria can also be
isolated from non-oligotrophic
water indicates that these
bacteria might be more
widespread and not limited to
nutrient-poor environments. For
example, they might live
attached to marine snow
particles (e. g. Alldredge et al.,
1986; Smith et al., 1992; Azam
and Malfatti, 2007 and
references therein), which
represent nutrient notspots for
neterotrophic bacteria, and
to the sediment with these
particles We assume that many
facultatively oligotrophic
bacteria have been overlooked so
far because they were not
searched for in non-oligotrophic
environments. Likewise, many
more already known
heterotrophic bacteria may be
capable of growing under much
poorer nutrient conditions than
currently assumed.

Conclusions	
In conclusion, the results	
presented in this PhD thesis	
(summarized in Figure 5.2) show	
that filaments of Beggiatoa sp.	
strain 35Flor react to high sulfide	
fluxes by migration into anoxic	
regions, where they reduce the	
amount of internal storage	
compounds. This migration can	
be enhanced or induced by	
blue/green light for a vet	
unknown reason. We suggest	
that the accompanying	
Pseudovibrio sp. strain FO-	
BEG1 can detoxify reactive	
oxygen species (ROS), generally	
produced during sulfide	
oxidation (Tapley et al., 1999),	
and might be responsible for the	
protection of Beggiatoa	
filaments, which are known to	
lack the gene for catalase (Larkin	
and Strohl. 1983). Possibly.	
production of nitric oxide (NO)	
by the Pseudovibrio sp. might	
also be involved in the protection	
against ROS. However, the	
origin of NO is unknown	
because no fixed nitrogen source	
was present in the medium of the	
co-culture and the heterotroph	
does not posses a gene encoding	
for nitrogenase. On the other	
hand, the Beggiatoa sp. can fix	
N2 (Henze, 2005) and it might	
be that a fixed nitrogen source is	
transferred from the sulfide-	
oxidizer to the accompanying	
bacterium. The Pseudovibrio sp.	

examined in this thesis is a	
generalist able to gain energy in	
many different ways and can	
also grow under extremely	
nutrient-poor conditions.	
Furthermore, it possesses genes	
to interact with pro- and	
eukaryotes. We found that also	
other bacteria from the habitat of	
large sulfide- oxidizers can adapt	
fast from nutrient affluence to	
deficiency. Maybe these bacteria	
are able to also support growth	
of the large sulfide-oxidizers, but	
this needs to be investigated in	
the future.	
Figure 5.2: Illustration of the	
results obtained in this PhD	
thesis concerning the migration	
behavior of Beggiatoa sp. and	
the co-occuring Pseudovibrio	
strain. Some results were	
supported by our data (black)	
while others are hypothesis and	
remain to be proven (blue). ROS	
= reactive oxygen species, NO =	
nitric oxide, $N = nitrogen$	
Outlook	
The results of my PhD thesis	
provide new insights into the	
migration behavior of large	
sulfur bacteria, associations	
between bacteria, and growth	
under extreme nutrient	
deficiency. Nevertheless, the	
obtained results also raise new	
questions that need to be	
addressed in the future.	
We hypothesize that the	
Beggiatoa sp. filaments depend	

on the heterotrophic	
Pseudovibrio sp. because they do	
not themselves possess	
protective measure against	
oxidative stress (Chapter 3).	
However, direct evidence for this	
theory is still missing. To	
investigate the capability of	
other heterotrophic, catalase-	
positive bacteria or ROS	
scavenger to support growth of	
the Beggiatoa sp., filaments from	
the lower subpopulation should	
be transferred without (or with	
only few) accompanying bacteria	
into fresh media. If growth is	
positive in the presence of the	
other catalase-positive bacteria	
or ROS scavengers, the transfer	
of Pseudovibrio sp. from the	
inoculation source has to be	
excluded, which can be tested by	
Fluorescence in situ	
hybridization.	
The preliminary data on the	
staining of nitric oxide opens up	
the possibility that NO might be	
involved in the reaction with	
ROS (Chapter 3). However, to	
has to be varified by direct	
mas to be verified by direct measurement of NO with a NOx-	
analyzer or detection of NO by	
its molecular mass using mass	
spectrometry The chemical	
reaction of NO with oxygen in	
water forming mainly nitrite	
(Ignarro et al., 1993) might	
complicate the direct	
measurement of nitric oxide. The	

sole nitrogen source in the coculture is N2. Therefore, it can be speculated that the interaction between the two bacteria is not only one-sided because of the two partners only the Beggiatoa sp. are known to fix N2 (Chapter 5). To investigate if a direct transfer of fixed nitrogen in the co-culture occurs, labeled nitrogen (15N2) can be added and the label can be searched for in the Pseudovibrio sp. using mass spectrometry (e.g. nano secondary ion mass spectrometry). We have shown the that Pseudovibrio FO-BEG1 sp. growing in pure culture under nutrient- poor conditions can also use typical substrates known heterotrophic from growth (Chapter 4.1). It still remains unclear if the observed growth is the same as typical heterotrophic growth only with less nutrients or if special regulating enzymes proteomic needed. A are comparison between bacteria grown under nutrient deficiency grown under nutrient and affluence might provide more information on the growth and the regulation of enzymes under oligotrophic conditions. The detailed of analysis substrates used during oligotrophic growth shows that bacteria the use multiple

substrates at the same time under

oligotrophic conditions (Chapter 4.1). However, only amino acids (which account only for a small fraction) were measured quantitatively and the overall respiration rate remains unknown. Therefore. the measurement of oxygen using consumption (e.g. microelectrode respiration chambers) under nutrient-poor conditions could allow quantification and calculation of the respiration rate under conditions. oligotrophic Furthermore, the fact that we have both metabolites (detected by ESI FT-ICR-MS) and genes (closed genome of Pseudovibrio sp. strain FO-BEG1) may allow us to connect metabolites with genes present in the investigated organism in the future. Maybe, this will also help predicting new metabolic pathways. Eventually, several heterotrophic strains, which were able to grow under both nutrient deficiency and affluence, were isolated during our studies (Chapter 4.2). The possibility of heterotrophic bacteria to grow under nutrientdeficient conditions might be a more widespread feature. To test hypothesis, this common bacteria heterotrophic from bacterial strain collections can be ordered and their ability to grow under nutrient-poor conditions can be tested.

Appendix The genus	
Pseudovibrio contains	
metabolically versatile and	
symbiotically interacting	
bacteria	
Abstract	
The majority of strains	
belonging to the genus	
Pseudovibrio have been isolated	
from marine invertebrates like	
tunicates, corals and especially	
sponges, but the physiology of	
these bacteria is poorly	
understood. In this study, we	
analyze the genomes of two	
Pseudovibrio strains. One is a	
required symbiont of a cultivated	
Beggiatoa strain, a sulfide	
oxidizing, autotrophic bacterium.	
The other one was isolated from	
a sponge (Enticknap et al.,	
2006). The data show that both	
strains are generalistic bacteria	
capable of importing and	
oxidizing a wide range of	
organic and inorganic	
compounds to meet their carbon,	
nitrogen, phosphorous and	
energy requirements under oxic	
and anoxic conditions. Several	
physiological traits encoded in	
the genome were verified in	
laboratory experiments with a	
pure culture of the Pseudovibrio	
strain originally associated with	
beggiatoa. Besides the versatile	
Decudovibrio straing our study	
reveals a number of open reading	
from and cone objectors in the	
irames and gene clusters in the	

genomes that seem to be	
involved in symbiont-host	
interactions. Pseudovibrio has	
the genomic potential to attach to	
host cells, might be capable of	
interacting with the eukaryotic	
cell machinery, produce	
secondary metabolites and may	
supply the host with cofactors.	
Introduction	
The first strain of the genus	
Pseudovibrio has been isolated	
from coastal seawater in 2004	
and was described as	
Pseudovibrio denitrificans - a	
marine, heterotrophic,	
facultatively anaerobic	
bacterium capable of	
denitrification and fermentation	
(Shieh et al., 2004). Two further	
type strains, P. ascidiaceicola	
(Fukunaga et al., 2006) and P.	
japonicus (Hosoya and Yokota,	
2007), were isolated from a	
tunicate and coastal seawater,	
respectively. Physiologically,	
these isolates were not notably	
different from P. denitrificans.	
Besides the three type strains,	
Pseudovibrio spprelated	
bacteria have been found in	
various studies throughout the	
world either by 16S rRNA gene	
analysis or direct isolation	
methods (Hentschel et al., 2001;	
Webster and Hill, 2001; Olson et	
al., 2002; Thakur et al., 2003;	
Thiel and Imhoff, 2003; Thoms	
et al., 2003; Agogué et al., 2005;	
Lafi et al., 2005; Enticknap et	

al., 2006; Koren and Rosenberg, 2006; Sertan-de Guzman et al., 2007; Muscholl-Silberhorn et al., 2008; Riesenfeld et al., 2008; Kennedy et al., 2009; Rypien et al., 2010; Santos et al., 2010). Interestingly, besides Ρ. denitrificans, P. japonicus and a Pseudovibrio spp.-related isolate from coastal, oligotrophic seawater (Agogué et al., 2005), all other strains belonging to this genus discovered until today have found been closely associated with marine like invertebrates tunicates. corals, and sponges. Especially Porifera seem to harbor Pseudovibrio populations, e.g., as the dominating species of the culturable bacterial community Hill. 2001: (Webster and Muscholl-Silberhorn et al.. 2008). Additionally, Pseudovibrio has been found in sponge larvae as the most abundant prokaryote, indicating vertical transmission of these bacteria in their hosts (Enticknap et al., 2006). Such a consistent pattern of Pseudovibrio spp. associated with sponges suggests that they are symbionts of those metazoa (Webster and Hill, 2001; Enticknap et al., 2006). Whether the nature of this mutualistic/ symbiosis is commensalistic whether or Pseudovibrio rather spp. represent pathogens/parasites is

uncertain, but the fact that	
Pseudovibrio spp. have been	
isolated only from healthy	
sponges indicates that the	
bacteria do not harm the host and	
might be even required for its	
health (Webster and Hill, 2001).	
Another shared feature is the	
production of secondary	
metabolites by many of the	
cultured Pseudovibrio strains.	
For instance, heptylprodigiosin,	
a compound that exhibits	
antimicrobial activity, was	
isolated from a pure culture of P.	
denitrificans Z143-1 (Sertan-de	
Guzman et al., 2007) and the	
production of additional	
bioactive compounds could be	
shown in several other studies	
(Hentschel et al., 2001;	
Muscholl-Silberhorn et al., 2008;	
Kennedy et al., 2009; Santos et	
al., 2010).	
Despite the fact that members of	
the genus Pseudovibrio seem to	
be ubiquitous and important	
associates of marine	
invertebrates and are also found	
free-living, very little is known	
about the physiology and	
interactions with the nost. In this	
study, we analyze the genomes	
OI TWO PSEUdOVIDIO STRAINS.	
rseudovidrio sp. FO-BEGI has	
oprichment culture of	
Baggiatoa strain a filamentous	
sulfide ovidizing besterium	
(Prook and Sobulz Vost 2011)	
(DIOCK and Schulz- Vogi, 2011;	

Chapters 2 and 3). Initially, this	
Beggiatoa strain was sampled	
from a coral suffering from the	
black band disease off the coast	
of Florida, which indicates that	
the strain Pseudovibrio FO-	
BEG1 could have been	
associated with the coral at the	
time of sampling - either in a	
commensalistic/mutualistic or	
pathogenic relationship - and is	
now available as an axenic	
culture in our lab. Intriguingly,	
strain FO-BEG1 is also	
maintained in a co-culture with a	
Beggiatoa sp., which seems to be	
unable to grow without	
Pseudovibrio and is therefore	
dependent on strain FO-BEG1.	
The second strain, Pseudovibrio	
sp. JE062, has been isolated in	
Florida from the sponge Mycale	
laxissima in the year 2006 and	
was described as a sponge	
symbiont by Enticknap et al.	
(2006). The analysis of these	
genomes gives us an insight into	
the physiological and symbiotic	
potential of both Pseudovibrio	
strains and reveals fascinating	
microorganisms that seem to be	
adapted to free-living and	
symbiotic life styles.	
Materials and Methods Growth	
Conditions	
ror aerodic growin CM medium	
mounted after site alaring the	
was used. After autoclaving, the	
K2HDO4 (1.15 mmal L.1)	
$ \mathbf{\Lambda} \angle \mathbf{\Pi} \mathbf{\Gamma} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} U$	

glucose (10 mmol L-1 unless	
stated otherwise), 1 mL L-1	
tungsten/selenium solution	
(Brysch et al., 1987), 1 mL L-1	
trace elements (Widdel and	
Pfennig, 1984), and 1 mL L-1 of	
four vitamin solutions prepared	
according to Aeckersberg et al.	
(1991). For measurement of	
SO42- evolution during S2O32-	
oxidation, 10 mmol L-1	
Na2S2O3 • 5 H2O and 5 mmol	
L-1 glucose were added and 2 g	
L-1 K2SO4 from the original	
recipe was replaced with 0.75 g	
L-1 KCl. To compare growth	
between a culture with and	
without Na2S2O3, K2SO4 was	
not omitted from the medium	
and glucose and Na2S2O3 • 5	
H2O were used in the same	
concentrations as described	
above. To investigate the growth	
with 4-hydroxybenzoic acid and	
benzoate, both compounds were	
added in a concentration of 2	
mmol L-1, respectively, without	
any other carbon source. Growth	
I 1) as phosphomoacetate (1 mmol	
L-1) as phosphorus source was	
as the only phosphorus source	
as the only phosphorus source	
from the medium For	
fermentation and denitrification	
experiments under anovic	
conditions, aged North Sea water	
was buffered with 50 mmol L-1	
TRIS. supplemented with	
NH4Cl (10 mmol L-1) and the	

pH adjusted to 8. Preparation of the medium was performed according to Widdel and Bak (1992) in order to prepare the medium anoxically. Cooling was performed under N2 atmosphere, except for experiments in which N2 production was measured, in which Ar was used as the atmosphere instead. After autoclavation, the medium was supplemented with 10 mmol L-1 glucose, 1 mL L-1 tungsten/selenium solution, 1 mL L-1 trace elements and 1 mL L-1 of four vitamin solutions prepared as described above. NaNO3 (10 mmol L-1) was for added experiments investigating denitrification. To test CO oxidation. CM medium was prepared as described above, containing 400 limol L-1 glucose and supplied with 500 p.p.m. CO to the bottle headspace. For aerobic growth experiments, 250 mL Erlenmeyer flasks were filled with 100 mL medium. For anaerobic growth, 156 mL serum bottles (Wheaton, Millville. USA) were filled anoxically with 50 mL medium and closed with butyl rubber stoppers. For all experiments, 0.1% or 0.5% of a preculture grown aerobically in CM medium used was as inoculum. All growth experiments were performed with Pseudovibrio sp. FO-BEG1 in triplicates at 28°C in the dark

with shaking at 110 rpm.	
Chemical analyses	
Bacterial growth was monitored	
as the optical density (OD600	
nm) using an Eppendorf	
BioPhotometer (Eppendorf AG,	
Hamburg, Germany). SO42- was	
measured with a Metrohm 761	
Compact IC with conductivity	
detector (Metrohm AG, Herisau,	
Switzerland) equipped with a	
Metrosep A Supp 5-100 column	
with a carbonate eluent (3.2	
mmol L-1 Na2CO3/1 mmol L-1	
NaHCO3 in deionised water) at a	
flow rate of 0.7 mL min-1.	
Tetrathionate was measured	
according to Kamyshny (2009).	
Glucose and organic acids were	
determined using a HPLC	
system (Sykam GmbH) equipped	
with an anion neutral pre-column	
(4x20 mm; Sykam GmbH) and	
an Aminex HPX-87H separation	
column (300x7.8 mm; Biorad,	
Munich, Germany) at a	
temperature of 60 °C. The eluent	
consisted of 5 mM H2SO4 in	
HPLC-grade water with a flow	
rate of 0.6 mL min-1.	
Quantification of glucose,	
succinate, lactate, formate,	
acetate, propionate and ethanol	
was performed with the 7515A	
RI detector (ERC, Riemerling,	
Germany); pyruvate was	
measured with the Sapphire UV-	
Vis detector at 210 nm (Ecom,	
Praha, Czech Republic). NO3"	
was quantified with a HPLC	

system (Sykam GmbH, Eresing,	
Germany) containing an anion	
neutral pre-column (4x20 mm;	
Sykam GmbH) and an IBJ A3	
anion separation column (4x60	
mm; Sykam GmbH) with a	
column temperature of 50 °C.	
The eluent consisted of 25 mmol	
L-1 NaCl and 45% ethanol in	
deionised water with a flow rate	
of 1 mL min-1. Detection of	
NO3- was conducted with Linear	
Uvis 200 (Thermo Fischer	
Scientific GmbH. Dreieich.	
Germany) at 220 nm. N2 was	
measured as described by	
Zedelius et al. (2011). CO	
determination was conducted	
with a Shimadzu GC-8A	
(Shimadzu, Duisburg, Germany)	
gas chromatograph with a	
Molecular Sieve 5A column (80	
to 100; 0.125 in. by 2 m; Restek,	
Bellefonte, USA) at a flow of 20	
mL of synthetic air per minute at	
40°C and an RGD2 reduction	
gas detector (Trace Analytical,	
Menlo Park, USA).	
DNA extraction and sequencing	
DNA was extracted from strain	
FO-BEG1 using the Fast DNA	
SPIN Kit for Soil (MP	
Biomedicals LLC, Illkirch,	
France), according to	
manufacturers' instructions. 454	
sequencing was conducted by	
LGC Genomics GmbH with a	
454 GS FLX System. The	
Newbler 2.0.00.22 software was	
used for sequence assembly and	

quality assessment. Overall,	
522919 sequenced reads with an	
average length of 336.30 bp lead	
to a 29-fold sequence coverage.	
In order to close the gaps, a	
fosmid library with a 1.5-fold	
physical coverage was created	
and used for direct sequencing of	
the fosmid clones. For the	
residual gaps, 96 specific	
primers were designed and used	
for combinatorial PCR on DNA	
level, the products of which were	
sequenced via the Sanger	
method.	
Gene prediction, annotation and	
data mining	
Gene prediction was carried out	
by using the software Glimmer3	
(Delcher et al., 2007). Ribosomal	
RNA genes were detected by	
using the RNAmmer 1.2	
software (Lagesen et al., 2007)	
and transfer RNAs by	
tRNAscan-SE (Lowe and Eddy,	
1997). Annotation was	
version 2.2 system (Mayor et al.	
2003) supplemented by the tool	
ICoast version 1.6 (Richter et	
al. 2008). For each predicted	
open reading frame (ORF)	
observations have been collected	
from similarity searches against	
sequence databases NCBI- nr,	
Swiss-Prot, KEGG and	
genomesDB (Richter et al.,	
2008) and for protein family	
databases from Pfam (Bateman	
et al., 2004) and InterPro	

(Mulder et al., 2005). SignalP
has been used for signal peptide
predictions (Bendtsen et al.,
2004) and TMHMM for
transmembrane helix- analysis
(Krogh et al., 2001). Predicted
protein coding sequences were
automatically annotated by the
in-house software MicHanThi
(Quast. 2006). The MicHanThi
software predicts gene functions
based on similarity searches
using the NCBI-nr (including
Swiss-Prot) and InterPro
database The annotation of
proteins highlighted within the
scope of this study was subject
of manual inspection For all
observations regarding putative
protein functions on a value
cutoff of 10-4 was considered
Comparison of the shared game
content by reciprocal best
matches (DDM s) and functional
alassification with Vyota
classification with Kyoto
encyclopedia of genes and
genomes (KEGG)
Determination of the shared gene
Content has been performed by a
BLASI all versus all
search between FO-BEGI and
JEU62. Reciprocal best matches
were counted by a BLAST result
with an E value <1e-5 each and a
subject coverage of over 65%.
For metabolic pathway
identification, genes were
searched for similarity against
the KEGG database. A match
was counted if the similarity

search resulted in an expectation	
E value below 1e-5. All	
occurring KO (KEGG	
Orthology) numbers were	
mapped against KEGG pathway	
functional hierarchies and	
statistical analyzed.	
Functional classification with	
cluster of orthologous groups	
(COG) and calculation of the	
Average nucleotide identity	
(ANI)	
All predicted ORFs were also	
searched for similarity against	
the COG database (Tatusov et	
al., 2003). A match was counted	
if the similarity search resulted	
in an E value below 1e-5. ANI	
between the whole-genome	
sequences of strain FO-BEG1	
and the draft genome sequences	
of strain JE062 was determined	
by using the in silico DNA-DNA	
hybridization method of the	
JSpecies (Richter and Rosselló-	
Móra, 2009) software with	
default parameters.	
Creation of circular genome	
maps and prediction of ABC and	
TRAP type transporters	
Comparative circular genome	
maps of the RBMs shared	
between JE062 and FO-BEGI	
nave	
been drawn by using JCoast's	
plugin for CGView (Stothard	
and wisnart, 2005). Circular	
GC- plot and GC-skew	
representation has been drawn	
by using DNAPlotter (Carver et	

al., 2009). As initial step for the identification of the ABC transporters, genes containing the Pfam domain ABC tran (PF00005) were detected in the genome of strain FO-BEG1. For the identification of the permease and the periplasmic binding protein, the close proximity of genes containing the ABC tran domain was searched. Only ABC systems with at least one ABC_tran domain, one permease and one periplasmic binding protein were regarded as functioning ABC transporters and substrate specificity was predicted from the annotations of the subunits. In several cases, one subunit (e.g. the permease) was missing in close proximity of genes with the ABC tran domain. In this case, a single permease gene located on any place in the genome with the same substrate specificity prediction but not belonging to any complete ABC system, was used to complement the transporter system. TRAP transporters were regarded as complete when the subunits DctM, DctQ and DctP were present in close proximity. When two subunits were identified in close proximity and the third was missing, the single subunit located on any place in the genome not belonging to any complete TRAP system was

used to complement the	
transporter system. In the case of	
fusion of the DctQ and M	
subunits in one gene, only the	
DctP subunit was required to	
complete the transporter.	
Accession numbers	
The genome shotgun project of	
strain FO-BEG1 has been	
deposited at	
DDBJ/EMBL/GenBank under	
the accession number CP003147	
for the chromosome and	
CP003148 for the plasmid. The	
draft genome sequence of strain	
JE062 has the	
DDBJ/EMBL/GenBank	
accession number	
ABXL00000000.	
Results and Discussion General	
genome characteristics	
The genome size of strain FO-	
BEG1 is 5.9 Mbp, including a	
large plasmid of 0.4 Mbp (Figure	
S.1). The circular chromosome	
of 5.5 Mbp contains a large	
stretch of repeats at position	
2,707,040. This area of unknown	
size could not be bridged with a	
direct sequencing approach	
despite the presence of this area	
on a fosmid, indicating strong	
secondary structures, and has	
been masked with the ambiguous	
nucleotide code 'N'. The G+C	
content is 52.5 mol% and is	
consistent with the known values	
of the described Pseudovibrio	
isolates (Shieh et al., 2004;	
Fukunaga et al., 2006; Hosoya	

and Yokota, 2007). Altogether,	
we found 5,478 ORFs, 398 of	
which were located on the	
plasmid, which correspond to	
about 87% of encoding DNA.	
Six complete rRNA operons and	
69 tRNA encoding regions were	
annotated, indicating the	
capability of a quick response to	
changing conditions and fast	
growth when nutrients are	
available. The genome of strain	
JE062 has not been closed, but	
there are 19 contigs available	
with an overall size of 5.7 Mbp,	
5,225 ORFs and 52.4 mol% GC	
content, which is almost	
identical to the genome of strain	
FO-BEG1 (Figure S.1 A and B).	
It contains 72 tRNA genes and	
seven complete rRNA operons.	
Unfortunately, the repeat-rich	
area that could not be sequenced	
in the genome of strain FO-	
BEG1 shows an ambiguous	
sequence in strain JE062 as well,	
and could therefore not be used	
to close the gap in FO-BEG1.	
Figure S.I. Comparative circular	
map of Pseudovibrio sp. FO-	
BEGI chromosome (A) and	
plasmid (B). Most outer lane	
represents the reciprocal best	
antant hatwaar EO DEC1	
IE062 Long two and three	
represent all predicted area	
reading frames (OPEs) on the	
leading (red) and leading (green)	
stronds The two inner lanes	
strands. The two inner lanes	

display the GC-plot and the GC-	
skew. The red arrow indicates	
the area of unknown size that	
could not be closed during	
sequencing. The bar chart (C)	
express the amino acid	
percentage identity of each RBM	
shared gene-content between	
FO-BEG1 and JE062. The blue	
bar is representing the FO-BEG1	
chromosome and orange the	
corresponding plasmid.	
Even though the genome of	
JE062 is not completely closed	
we assume that it also contains a	
plasmid with similar content,	
since most of the genes	
identified on the plasmid of FO-	
BEG1 were allocated in the	
genome of JE062 (Figure S.1 B).	
Table S.1 shows an overview of	
the genome characteristics of	
both strains as well as the	
assignment of the genes to	
COGs. The shared gene content	
between FO-BEG1 and the draft	
genome of JE062 comprises	
84.4% (4,287 ORFs, Figure S.1	
C). An ANI analysis conducted	
between strains FO-BEGI and	
JEU62 revealed a 94.5% ANIb	
(8/% genome alignment) and	
95.4% ANIm (86% genome	
alignment) value. The values are	
in the range of the proposed	
(Diskton and Description boundary	
(KICRIEF and Kossello-Mora,	
2009) indicating a species level	
Table S 1 Caren l	
Table S.I. General genome	

	-	
features of Pseudovibrio sp. FO-		
BEG1 and JE062, including		
categorization of the genes into		
cluster of orthologous group		
(COG) categories.		
[J] Translation, ribosomal		
structure and biogenesis 196		
190		
[K] Transcription 387 367		
[L] Replication, recombination		
and repair 135 125		
[D] Cell cycle control, cell		
division, chromosome		
partitioning 21 20		
[T] Signal transduction		
mechanism 138 140		
[M] Cell		
wall/membrane/envelope		
biogenesis 190 176		
[N] Cell motility 153 149		
[O] Posttranslational		
modification, protein turnover,		
chaperones 135 127		
[C] Energy production and		
conversion 245 245		
[G] Carbohydrate transport and		
metabolism 323 311		
[E] Amino acid transport and		
metabolism 507 492		
[F] Nucleotide transport and		
metabolism 99 92		
[H] Coenzyme transport and		
metabolism 185 181		
[I] Lipid transport and		
metabolism 148 142		
[P] Inorganic ion transport and		
metabolism 291 287		
[Q] Secondary metabolites		
biosynthesis, transport and		
catabolism 210 204		

[R] General function prediction	
only 598 576	
[S] Function unknown 281	
272	
Physiology	
In both genomes we found a	
number of genes that indicate	
high metabolic variety of	
Pseudovibrio FO-BEG1 and	
JE062. Degradation of	
carbohydrates is most likely	
performed via the Entner-	
Doudoroff pathway, which is	
present in both genomes, due to	
absence of the	
phosphofructokinase (PFK), a	
key enzyme of the glycolysis	
(Emden-Meyerhoff-Parnas),	
which is a regularly encountered	
phenomenon within marine a-	
Proteobacteria (Furch et al.,	
2009; Tang et al., 2009;	
Williams et al., 2009). Besides	
the PFK, all other enzymes	
involved in glycolysis can be	
identified in both genomes,	
including fructose-1,6-	
bisphosphatase I, the key	
enzyme for glyconeogenesis,	
Moverhoff Pernes pethyay can	
he used for anabolic purposes	
(see DDBI/EMBI/GenBank	
accession numbers CP003147	
$CP003148 \qquad \text{and} \qquad$	
ABXL00000000). Genes	
encoding all enzymes of the	
citric acid cycle and pentose	
phosphate pathway are present.	
Additionally, both strains have	

the genetic potential to degrade	
aromatic compounds via the P-	
ketoadipate pathway, which we	
demonstrated by growing	
Pseudovibrio sp. FO-BEG1 with	
4-hydroxybenzoate as the only	
carbon and energy source under	
aerobic conditions (Figure S 2.1	
A). Benzoate, however, was not	
degraded, indicating that either	
the uptake of benzoate is	
detained or the hydroxylation of	
the aromatic ring structure	
cannot be performed by	
Pseudovibrio FO-BEG1. Under	
anoxic conditions without	
nitrate, strain FO-BEG1	
metabolized glucose in mixed	
acid type fermentation, as	
suggested by the present genes in	
both strains (see	
DDBJ/EMBL/GenBank	
accession numbers CP003147,	
CP003148 and	
ABXL0000000), resulting in	
acidification of the medium and	
formation of mainly formate,	
lactate, acetate, and ethanol.	
Ethanol production during	
termentation has not been	
described for any Pseudovibrio	
strain yet. Additionally,	
pyruvate, propionate, and	
succinate have been formed, but	
to a lesser extent (Figure S 2.2	
A). Production of trace amounts	
or rumarate was detected, but	
could not be quantified. As	
expected, we found the complete	
set of genes essential for	

denitrification, including a	
membrane-bound (nar) and a	
periplasmic nitrate reductase	
(nap). In agreement, we	
observed a complete	
denitrification to N2 in	
laboratory experiments with	
strain FO-BEG1 (see	
DDBJ/EMBL/GenBank	
accession numbers CP003147	
and CP003148 and Figure S 2.2	
C). For the type strain P.	
denitrificans, simultaneous	
denitrification and fermentation	
was described by Shieh et al.	
(2004) and could be confirmed	
in our experiments for strain FO-	
BEG1 with acetate, formate,	
lactate, and ethanol as the main	
fermentation products (Figure S	
2.2 B). No genes for assimilatory	
nitrate reduction could be	
identified in the genome. A set	
of sox genes suggests that both	
bacteria can use reduced	
inorganic sulfur compounds as a	
source of energy to complement	
heterotrophy. We could show	
experimentally that the addition	
or this unable to the medium	
the Decendentification of the Decendentifica	
une Pseudovibrio sp. FO-BEGI	
over the insubstice region	
(Figure S 2.1 D and C) No.	
(Figure 5 2.1 D and C). No	
as an intermediate (results not	
as an intermediate (results not shown) Therefore we propose	
that this ulfate is ovidized	
appletaly to sulfate without	
completely to suitate without	

any intermediates, as it is known for the typical Sox pathway in a-Proteobacteria (for review, see Ghosh and Dam, 2009). We identified genes encoding a small (cutS), medium (cutM) and large (cutL) subunit of the aerobic form II carbon monoxide dehydrogenase (CODH) with the accessory gene coxG in the operon (see DDBJ/EMBL/GenBank accession numbers CP003147 and CP003148), indicating the capability of CO oxidation. However, uptake of CO could not be demonstrated under tested conditions (results not shown). Interestingly, our results confirm the hypothesis from a recent publication testing CO oxidation in bacteria containing type II CODH genes (Cunliffe, 2011), in which none of the isolates containing only the type II variant was capable of CO Only oxidation. bacteria containing the form I CODH have been shown to effectively oxidize CO, thereby questioning whether form II CODH is involved in the process of carbon monoxide oxidation, or if it has another primary function not known until now, as suggested by King and Weber (2007). In both Pseudovibrio strains, we found genes for phosphonate import and degradation, which allows the bacteria to cleave the

relatively stable C-P bonds of	
phosphonates (see	
DDBJ/EMBL/GenBank	
accession numbers CP003147,	
CP003148 and	
ABXL00000000). Thereby, they	
can metabolize a less accessible	
phosphorous pool in times of	
phosphate limitation. We could	
demonstrate growth of	
Pseudovibrio sp. FO-BEG1 with	
phosphonoacetate as the only	
source of phosphorous (Figure S	
2.3 A). Additionally, we could	
show adaptation of Pseudovibrio	
strain FO-BEG1 to oligotrophic	
conditions by culturing it with as	
little as 15 imol C L-1 (0.18 mg	
C L-1) dissolved organic carbon	
in the medium (Chapter 4),	
which shows that Pseudovibrio	
FO-BEG1 is capable of growth	
under extreme nutrient depletion.	
The high metabolic variety of	
Pseudovibrio sp. FO-BEG1 and	
JE062 is also reflected in the	
analysis of encoded primary	
transporters. In the genome of	
strain FO- BEG1 we could	
identify 31 tripartite ATP-	
independent periplasmic (TRAP)	
type transporters (see	
DDBJ/EMBL/GenBank	
accession numbers CP003147	
and CP003148) that are required	
tor import of dicarboxylic acids	
like malate, succinate and	
tumarate, one of the highest	
numbers of TRAP type	
transporters reported in a	

genome of a marine prokaryote	
so far (Wagner-Dobler et al.,	
2010). In strain JE062 we	
identified 27 TRAP transporters.	
Citric acid cycle intermediates	
seem therefore to be an	
important source of carbon and	
energy for the investigated	
Pseudovibrio strains. In addition,	
we reconstructed over 80 ATP-	
binding cassette (ABC)	
transporter systems with	
predicted substrate specificity	
from the genomic data of the	
strain FO-BEG1, including the	
plasmid, and over 70 ABC	
transporter systems for JE062	
(see DDBJ/EMBL/GenBank	
accession numbers CP003147,	
CP003148 and	
ABXL00000000). Sugars,	
oligopeptides and amino acids	
are the main substrates that are	
imported via the ABC systems.	
A large number of transporters	
for oligopeptides and amino	
acids in combination with over	
85 genes encoding peptidases	
and proteases (over 75 genes in	
strain JE062, see	
DDBJ/EMBL/GenBank	
accession number	
ABXL0000000) could help	
Pseudovibrio to hydrolyze	
complex particulate nutrients	
into ongopeptides and amino	
acids, which could serve as	
nutrition for both, the prokaryote	
and the nost, as has been	
suggested by Siegi et al. (2011).	

Also iron seems to be an	
important trace element, for	
which we identified eight	
transporters including three	
siderophores and three	
transporters for hemin (see	
DDBJ/EMBL/GenBank	
accession numbers CP003147,	
CP003148 and	
ABXL0000000).	
Table S.2. Identified ATP-	
binding cassette (ABC) and	
tripartite ATP-independent	
periplasmic (TRAP) transporters	
in the genomes of both	
Pseudovibrio strains and their	
putative functions.	
Vitamin synthesis	
Growth of pro- and eukaryotes	
highly depends on their	
requirements for cofactors that	
the organism can or cannot	
synthesize on its own. Vitamins	
are important for many different	
enzymatic processes and the	
synthesis of some vitamins is	
mainly accomplished by	
bacteria, making the prokaryotes	
a necessary part of the	
eukaryotic diet or an important	
partner in symbiotic	
relationships. The genomes of	
Pseudovibrio sp. FO-BEGI as	
well as JE062 contain genes	
encoding key enzymes of the	
(H) thismin (D1) munidaria	
(Π) , unannin (DI) , pyridoxin (P6) achalamin (D12)	
(D0), covariannin (D12), riboflavin (P2) folio acid (P0)	
and linois asid (22)	
and npoic acid (see	

DDBJ/EMBL/GenBank	
accession numbers CP003147,	
CP003148 and	
ABXL00000000). Independence	
of an external vitamin supply	
was confirmed during aerobic	
growth in the defined CM	
medium without the addition of	
any vitamins, which implies de	
novo synthesis of all required	
growth factors by strain FO-	
BEG1 under tested conditions	
(Figure S 2.3 B). Pseudovibrio	
spp. would therefore be	
beneficial companions for other	
prokaryotes or marine	
invertebrates, since the	
dependency on an external	
supply of those vitamins would	
be relieved.	
Bioactive compounds	
Symbiotic relationships between	
bacteria and marine	
invertebrates, especially	
sponges, are of special interest,	
because bacteria associated with	
sponges often produce novel	
bioactive compounds (Piel et al.,	
2004; Taylor et al., 2007; Fisch	
et al., 2009). In the chromosome	
of Pseudovibrio FO-BEG1 we	
identified a genomic island of	
more than 50 kb containing	
among others a gene cluster of	
20 genes predicted to be	
involved in secondary metabolite	
production (see	
DDBJ/EMBL/GenBank	
accession number CP003147).	
The cluster exhibits high	

sequence similarity to an	
architecturally almost identical	
hybrid nonribosomal peptide	
synthetase-polyketide synthase	
(NRPS-PKS) system previously	
reported from many pathogenic	
and commensal	
Escherichia coli strains	
(Figure S.2) (Nougayrède et al.,	
2006). The E. coli metabolite,	
termed colibactin, remains	
structurally uncharacterized.	
However, transposon	
mutagenesis of the gene cluster	
suggested that colibactin is a	
pathogenicity determinant that	
induces DNA double strand	
breaks in eukaryotic host cells,	
eventually resulting in cell death.	
The only significant difference	
between the gene clusters in	
Pseudovibrio FO-BEG1 and E.	
coli is an additional set of genes	
in the former, encoding putative	
transporters and the presence of	
a different phosphopantetheinyl	
transferase gene variant likely	
involved in generating holo-	
proteins from apo forms of PKSs	
and NRPSs (Lambalot et al.,	
1996). In addition, two E. coli	
genes are fused in the	
Pseudovibrio cluster. Despite	
these differences, the	
that the product of the EO PEC1	
cluster is collibratin providing	
new opportunities to upvoil the	
identity of this alusiva and	
biomedically relevant	
bioineulcany relevant	

compound. Interestingly, we find	
this more than 50 kb NRPS/PKS	
fragment only in Pseudovibrio	
sp. FO-BEG1 but not in the	
genome of strain JE062, with	
flanking regions downstream and	
upstream of the inserted	
fragment highly conserved in	
synteny in strain JE062 (data not	
shown), indicating that it has	
been acquired via horizontal	
gene transfer. Additionally, the	
plasmid of strain FO-BEG1	
contained an ORF encoding a	
type III PKS of a size of 7.4 kb,	
which could also be detected in	
strain JE062 (see	
DDBJ/EMBL/GenBank	
accession number CP003148).	
Figure S.2. Nonribosomal	
peptide synthetase-polyketide	
synthase (NRPS-PKS) system in	
Pseudovibrio sp. FO- BEG1 and	
Escherichia coli strain IHE3034.	
White arrows represent the genes	
present in Enterobacteriaceae	
and strain FO-BEG1; black	
arrows represent the open	
reading frames (ORFs) present	
only in either Enterobacteriaceae	
or FO-BEGI but presumably	
involved in the production of	
conducting the gray arrow shows	
in the synthesis of collibertin	
The symbol at ODE DSE 2221	
represents a gene fusion of E	
coli genes clbG and clbU in EQ	
BEG1: the symbol at DCE 3224	
3221 represents gape insertion or	
1 3321 represents gene insertion or	

deletion in strain FO-BEG1 or E.	
coli IHE3034, respectively.	
DNA exchange and horizontal	
gene transfer	
The genomes of both	
Pseudovibrio strains show a high	
metabolic variety. It is	
reasonable to assume that	
various genes were acquired via	
horizontal gene transfer from	
other microorganisms as is	
indicated e. g. by the presence of	
a 50 kb large NPRS-PKS island	
that can be found only in	
Pseudovibrio sp. FO-BEG1 but	
not in strain JE062, although	
both genomes are in general	
highly similar. In the genome of	
strain FO-BEG1 we identified a	
set of genes coding for a	
complete gene transfer agent	
(GTA) (in strain JE062 several	
genes were missing, see	
DDBJ/EMBL/GenBank	
accession numbers CP003147,	
CP003148 and	
ABXL00000000), a unit best	
described as a virus. It harbors	
small parts of the host DNA and	
capable of injecting it into	
appropriate cells, without having	
negative effects on the nost cell	
(for reviews see Lang and Beatty 2001; Lang and Beatty	
Deally, 2001; Lang and Beauy, 2007) By this process	
2007). By this process, Pseudovibrio could have taken	
up and dispersed DNA corried in	
virus-like particles thereby	
gathering genes and establishing	
a diverse physiology for a	
a diverse physiology for a	

symbiotic and a free-living	
lifestyle Additionally we found	
14 integrase and 21 transposase	
alaments in the genome of	
Decudercibric on EO DEC1 (acc	
Pseudovidrio sp. FO-BEGI (see	
DDBJ/EMBL/GenBank	
accession numbers CP00314/	
and CP003148), 9 of which are	
located adjacent to the hybrid	
NRPS-PKS gene cluster, which	
verifies acquisition of this	
genomic island via horizontal	
gene transfer.	
Quorum sensing	
We could identify 15 genes in	
strain FO-BEG1 and 14 in strain	
JE062 containing the LuxR	
domain, which represents the	
transcriptional regulator of the	
acetylated homoserine lactone	
(AHL) type, allowing the	
bacterium to detect AHL quorum	
sensing molecules and to initiate	
a response (see	
DDBJ/EMBL/GenBank	
accession numbers CP003147,	
CP003148 and	
ABXL00000000). Intriguingly,	
we could not find any luxI genes,	
which code for AHL quorum	
sensing molecules. This	
observation leads us to the	
hypothesis that both	
Pseudovibrio strains do not	
communicate via AHL within	
their own species, but seem to	
use the LuxR as receptors to	
react to quorum sensing	
molecules produced by other	
species and initiate a respective	

answer. Such a scenario has been	
described before by Case et al.	
(2008) and was called	
'eavesdropping'. The response	
reaction could include the	
production of bioactive	
compounds to repel competing	
prokaryotes or to protect the host	
from pathogens or parasites.	
Alternatively, such LuxR-family	
'solos' could participate in	
interkingdom signaling, as	
suggested by Subramoni and	
Venturi (2009), thereby	
facilitating prokaryote-host	
interactions of Pseudovibrio	
strains with marine invertebrates.	
Growth with Beggiatoa sp.	
35Flor	
Pseudovibrio sp. FO-BEG1 is	
the single accompanying	
organism of the Beggiatoa strain	
35Flor, which is growing in a	
chemolithoautotrophic sulfide-	
oxygen-gradient medium (Brock	
and Schulz-Vogt, 2011; Chapters	
2 and 3). All attempts to grow	
Beggiatoa without Pseudovibrio	
identify the factors required by	
the Baggiaton strain for	
autonomous growth It is known	
however that Beggiatoa spn do	
not possess catalases (Larkin and	
Strohl. 1983) and therefore are	
susceptible to reactive oxygen	
molecules originating from	
respiration. Addition of catalase	
to the medium is known to	
increase the viability of	
Beggiatoa sp. (Burton and	
---	--
Morita, 1964). We hence	
hypothesize that Beggiatoa sp.	
35Flor depends on the radical	
protection system exhibited by	
Pseudovibrio sp. FO-BEG1	
including genes coding for over	
20 superoxide dismutases,	
catalases and peroxidases (see	
DDBJ/EMBL/GenBank	
accession numbers CP003147	
and CP003148). The role of	
heterotrophic bacteria as	
scavenger of reactive oxygen	
species has also been described	
by Morris et al. (2008), which	
could establish robust growth of	
cyanobacteria after addition of	
'helper' heterotrophs.	
Secretion Systems	
In the genomes of FO-BEG1 and	
JE062 we could identify two loci	
that encode type VI secretion	
systems (T6SS) as well as one	
type III secretion system (T3SS)	
including effector molecules,	
which indicates the capability of	
specific interactions with	
eukaryotes and the possibility of	
The TCSS has been a line in the transformed by the	
The Toss has been described as	
a major secretion system in the	
virulence factor in morbific	
bacteria (Mougous et al. 2006)	
Pukatzki et al. 2006) and a core	
of 13 highly conserved and	
essential subunits has been	
identified for this secretion	
system 129	

(Boyer et al., 2009). In both	
genomes of the Pseudovibrio	
strains, we found two gene	
clusters consisting of 12 (cluster	
I) and 20 (cluster II) genes that	
encode T6SSs. Cluster II	
contains the complete set of core	
subunits and therefore we	
assume that cluster II could, if	
expressed, produce a complete	
and functional type VI secretion	
system. In cluster I, two core	
genes are missing in the operon,	
hcpI and vgrG, which are main	
components of the injection	
apparatus with possible effector	
functions (Pukatzki et al., 2009;	
Bonemann et al., 2010).	
However, homologues of hcpI	
and vgrG could be identified in	
additional copies at other	
locations in the genomes of FO-	
BEG1 and JE062 (see	
DDBJ/EMBL/GenBank	
accession numbers CP003147,	
CP003148 and	
ABXL0000000), which is a	
phenomenon regularly found in	
genomes containing T6SS	
(Pukatzki et al., 2009). The	
possible role for type VI	
secretion systems in bacteria has	
not been completely elucidated	
so far, but several functions have	
been attributed to it already.	
Mainly, T6SS is described as a	
virulence factor of pathogenic	
bacteria delivering effector	
proteins into host cells (Filloux	
et al., 2008). However, further	

studies reveal the involvement of T6SS in biofilm formation (Aschtgen et al., 2008), quorum sensing (Weber et al., 2009), interbacterial interactions (Hood 2010) et al.. and antipathogenesis (Chow and Mazmanian. 2010: Jani and Cotter, 2010). In conclusion, it can be assumed that the T6SS of both strains are functional since the genomes contain the main structural components of the type VI secretion system. In addition to the T6SS, we identified a type III secretion system in the genomes of both Pseudovibrio strains, which is located in a genomic region encompassing around 35 ORFs with various highly conserved known from T3S proteins systems (Cornelis and Van Gijsegem, 2000) (Figure S.3 and DDBJ/EMBL/GenBank see accession numbers CP003147. CP003148 and ABXL0000000). Besides the apparatus also secretion we identified genes encoding homologues of three types of effector molecules in the genome of strain FO-BEG1 and two effector molecule types in strain JE062. Those effectors might be directly involved in the establishment symbiosis of between Pseudovibrio and its host. YpkA, IpgD (found in both genomes) and YopJ (only in

strain FO-BEG1) are effector
molecules that affect the
cytoskeleton or the innate
immune response of the host,
respectively. YpkA is a
serine/threonine kinase, which
has negative effects on
cytoskeletal dynamics due to its
interaction with actin, thereby
contributing to the resistance to
phagocytosis (Cornelis, 2002).
YpkA is present in three copies
in both genomes. In Porifera,
specialized amoeboid cells, the
archaeocytes, resemble
macrophages and eliminate non-
self material via phagocytosis
(Muller and Muller, 2003).
Pseudovibrio, expressing and
secreting the YpkA effector,
could interfere with this process,
preventing archaeocytes from
digesting Pseudovibrio cells. A
similar effect could be induced
by a homologue of IpgD found
in both genomes, a virulence
factor that is responsible for
morphological changes of a host
cell by increasing membrane
detachment from the
cytoskeleton (Niebuhr et al.,
2000; Niebuhr et al., 2002).
Figure S.3. Operon coding for
type III secretion system (T3SS)
subunits and effector proteins.
White arrows show annotated
nomologues of 1388 subunits
including the gene name within
the arrows; black arrows
represent annotated effector

homologues; dark gray arrows	
show annotated genes encoding	
proteins presumably not	
involved in T3SS; light gray	
arrows show hypothetical	
proteins with unknown function.	
The locus is indicated above and	
below some genes for orientation	
purposes.	
In FO-BEG1 we additionally	
identified a homologue of the	
YopJ effector exhibiting a	
serine/threonine	
acetyltransferase function. By	
acetylation of serine and	
threonine residues of mitogen-	
activated protein (MAP) kinases	
it prevents phosphorylation of	
those molecules and therefore	
inhibits the innate immune	
response of the organism	
(Mukherjee et al., 2006).	
Intriguingly, it has been shown	
that sponges possess a very	
efficient innate immune response	
system, using MAP kinases as	
the essential component of its	
response to bacterial endotoxin	
lipopolysaccharide (LPS) (Bohm	
et al., 2001; Muller and Muller,	
2003). This indicates that	
homologues of the	
acetyltransferase YopJ effector	
in researce of MAD lains	
phosphorylation of MAP kinases	
via accelulation, thereby playing a	
immuno answer of the best	
organism allowing Draudovibria	
to avoid phagoavtoria	
to avoid phagocytosis, as	

described by Bartsev et al.	
(2004) for a Rhizobium strain,	
and to remain in the host for	
establishment of a symbiosis.	
This hypothesis is further	
supported by the fact that a	
homologue of YopJ (NopJ) was	
shown to be an effector in	
symbiotic rhizobia (Deakin and	
Broughton, 2009) and Lackner et	
al. (2011) demonstrated that	
T3SS is involved in maintenance	
of a symbiosis between bacteria	
and fungi by enhancement of	
intracellular survival of the	
prokaryote within the host.	
Adhesion	
In both genomes we found	
homologues of genes coding for	
proteins responsible for adhesion	
to surfaces or other cells. These	
proteins, belonging to the group	
of amyloids, are extracellular	
proteinaceous components and	
are known in Enterobacteriaceae	
as curli fibers. They are involved	
in adhesion to surfaces, cell	
aggregation, biofilm formation	
and mediate cell-cell adhesion	
and invasion of host cells	
(Barnhart and Chapman, 2006).	
I ne production of curli fibers in	
enteric bacteria is dependent on	
at least six proteins encoded by	
the operons csgAB and	
(Usermor et al. 1005) (1, 1, 1)	
(Hammar et al., 1995), the latter	
of which is required for	
assembly, stability and secretion	
of the amyloids (Hammar et al.,	

1995). csgAB encodes the	
structural subunits of the curli	
fibers, both genes containing	
characteristic repeat motifs	
(Hammar et al., 1996). A gene	
cluster in the genome of	
Pseudovibrio sp. FO-BEG1	
resembles the curli formation	
operon in enteric bacteria	
(Figure S.4).	
Figure S.4. Comparison of genes	
encoding amyloids in	
Enterobacteriaceae and the	
operon in Pseudovibrio sp. FO-	
BEG1. White arrows represent	
homologues of genes in enteric	
bacteria; gray arrows show genes	
present in Enterobacteriaceae	
only; black arrows show genes	
containing curli repeats, typical	
motifs of the amyloid structural	
subunits. The number within the	
black arrows shows the amount	
of curli repeats in the according	
gene.	
Homologues of csgF and csgG,	
required for stabilization and	
secretion of the amyloids are	
found in direct proximity to three	
genes containing curlin	
associated repeats as typical	
structural components of the	
curli fibers. We hypothesize that	
the identified operon might code	
for amyloid structures	
comparable to curli fibers due to	
the existence of characteristic	
curlin repeat motifs and genes	
involved in the assembly and	
secretion of such structures,	

therefore allowing Pseudovibrio	
to attach to other cells or form	
biofilms or aggregates.	
Additionally, we identified 35	
genes in strain FO-BEG1 and 37	
in JE062 containing domains	
mediating prokaryote-eukaryote	
interactions, supporting the	
proposed role of Pseudovibrio as	
a symbiont with possibilities to	
attach and interact with the host	
organism (see	
DDBJ/EMBL/GenBank	
accession numbers CP003147,	
CP003148 and	
ABXL0000000).	
Conclusions	
In this study, we analyzed highly	
similar genomes of two	
Pseudovibrio strains that	
originate from the coast of	
Florida, the Pseudovibrio sp.	
FO-BEGI sampled from a coral	
and maintained over 10 years in	
co-culture with Beggiatoa sp.	
and Pseudovibrio sp. JE062	
sampled from a sponge in the	
same region (Enticknap et al.,	
strains is avtramaly versatile and	
the metabolic traits found in the	
genome could be partially	
verified in experiments with	
strain FO-BEG1. Here. we	
describe for the first time a	
Pseudovibrio strain that uses	
aromatic compounds as a carbon	
and electron source, oxidizes	
thiosulfate under aerobic	
conditions and uses	

phosphonates as a phosphorous	
source. Notably, strain FO-	
BEG1 grows under extreme	
nutrient limitation, which	
emphasizes its adaptation to life	
in the open ocean. The metabolic	
variety is confirmed by the	
numerous transporter systems	
that are encoded in the genome.	
Compared with other marine	
bacteria, like the prominent	
Roseobacter clade, which is	
known to be ubiquitous,	
multitudinous and	
physiologically versatile	
(Newton et al., 2010),	
Pseudovibrio seems to be	
capable of a similarly	
generalistic life style, exploiting	
quite a number of sources for	
energy sources, nutrients and	
trace elements.	
Aside from metabolic variety,	
the genomic data of both strains	
also confirm close associations	
with marine invertebrates and	
indicate several potential	
mechanisms for establishing and	
maintaining a symplosis. The	
presence of effector homologues	
secreted by type III secretion	
systems which could affect	
sponges by interacting with their	
immune response system (YonI)	
or the cytoskeleton (YpkA.	
IpgD) and thereby have a drastic	
impact on the cell machinery of	
the host. Another fascinating	
discovery is the presence of the	

hybrid NRPS-PKS system in
strain FO-BEG1, which has so
far only been described for
members of the
Enterobacteriaceae family (Putze
et al., 2009), producing the
bioactive compound colibactin
with vet unknown in-vivo
functions but arresting
eukarvotic cells in the G2 phase
eukaryotic cens in the O2 phase,
(Nousewredge et al. 2006) The
(Nougayrede et al., 2006). The
presence of a gene cluster coding
tor a cytopathic compound in
strain FO-BEG1 emphasizes the
impact that Pseudovibrio cells
might have on marine
invertebrates. Intriguingly, strain
FO-BEG1 seems to be a required
partner in the Beggiatoa co-
culture, indicating its important
symbiotic role not only for
marine invertebrates but also for
prokaryotes. It is possible that
Pseudovibrio has positive effects
for certain bacteria under in-vivo
conditions. e.g. by supplying
vitamins or detoxifying
metabolic intermediates or
radical oxygen species
Figure S 5 Schematic overview
of the possible life styles and the
physiologia conshilition dominad
physiologic capabilities derived
irom genetic information of both
Pseudovibrio genomes. On the
left hand side, physiologic
abilities are depicted that could
be used in free-living, oxic and
anoxic conditions. On the right
hand side, the attached or

associated life style is illustrated. host organism for The the associated life style can be represented by a sponge, coral or tunicate. Biofilm formation. aggregation and attachment to host cells could be performed via e. g. amyloid-like structures. The proposed secretion systems could be involved in prokaryoteinteractions, eukarvote influencing the cell machinery of the host. Additionally, Pseudovibrio could supply the host with cofactors like vitamins synthesize secondary or metabolites а defense as against mechanism other prokaryotes or the host.

The frequent identification and isolation of Pseudovibrio strains in many studies over the last years implies an important but rather unexplored role for this genus in marine habitats. According to the genomic and physiological data on Pseudovibrio spp., we propose a free- living and attached or associated life style model for this genus (Figure S.5). As a heterotroph, denitrifying Pseudovibrio has an obvious influence on the carbon and nitrogen cycles. Its ecological impact can now be extended to the sulfur and phosphorus cycles due to its ability to metabolize thiosulfate and phosphonates.

Additionally, we hypothesize	
that, due to the predictions based	
on the genomic data, similar to	
E. coli in humans, Pseudovibrio	
is a commensalistic or even	
beneficial symbiont of marine	
invertebrates with a potential to	
become pathogenic.	

inorganic In our case. an contamination was introduced to the artificial seawater after the incubation during the solid phase extraction of DOM (SPE-DOM). This led to ion suppression of the organic compounds in the FTspectra ICR mass in ESI negative mode. Consequently, it was not possible to analyze the DOM composition in that mode and we chose the positive mode instead. This problem does not natural occur in seawater samples, because the concentration of DOC is higher. We could show that the organic present in substances the artificial medium are detectable if the overall background of DOM is 10 to 100 times higher. This observation indicates that a specific concentration of organic matter has to be present to be detected by ESI FT-ICR-MS if inorganic substances are introduced in high amounts during extraction or ionize extremely well.

In ESI positive mode, an organic contamination of the artificial seawater was observed. Two series of polyethylene glycol (PEG) oligomers were detected. As a potential source NaOH used for medium preparation was identified. Since PEGs ionize extremely well in ESI positive mode, the peaks are much higher compared to most other peaks in

the sample. Using the standard addition method (described in material and methods), the total amount of PEG contaminations was estimated to be 1000fold less than the total DOC concentration in artificial seawater, and thus represented only a very small fraction of the entire DOC contamination. These impurities analyzed in the artificial seawater medium were not detected in the SPE-DOM of natural seawater samples and thus did not affect the FT-ICR-MS analysis of natural seawater incubations.

Growth and substrate use in artificial seawater

During growth in artificial seawater under extremely oligotrophic conditions, Pseudovibrio sp. strain FO-BEG1 multiplied from about 20 cells mL-1 to 2 X 104 cells mL-1, even though the overall of DOC did amount not measurably decrease. Thus, the amount of compounds that were consumed was probably below detection limit (0.5 |imol C L-1). Based on the increase in cell numbers when grown with glucose and ammonium (supplementary material Table S.4.1 and Figure S.4.1), it was calculated that about 1 to 3 imol

C L-1 is needed for the observed cell numbers as carbon and energy source. Apparently, the uptake of amino acids alone sustain could not bacterial growth because the initial amino acid concentration (0.13 |imol L-1) was already much lower than the required 1 to 3 |imol C L-1. During the initial growth phase, we found a decrease in dissolved free amino acids (DFAA) concentration concurrently with an increase in dissolved combined amino acids (DCAA). whereas the overall amino acid concentration (DFAA + DCAA) did not decrease (Table 4.1.1). Within the growth phase, the DFAA might have been used as precursors, e.g. for exo-enzymes, which lead in turn to an increase in the DCAA concentration. but no overall decrease in the amino acid concentration. During stationary phase, we found a slight decrease of total amino acids. This may suggest that amino acids were rather used as substrate for maintaining nongrowing cells.

The compositional analysis of DOM with ESI FT-ICR-MS revealed a decrease of nitrogencontaining compounds during the initial growth phase (Figure 4.1.3 B and C). Inferring from their molecular compositions (high H/C, low O/C, Ncontaining), these substances

were most likely detergents, such as ampholytic amino oxides or betaines. Using this method we cannot quantify the amount of carbon corresponding to this decrease. In addition. а compound with a decreasing peak in the mass spectrum is not necessarily completely oxidized to CO2. Thus, we cannot ultimately clarify whether the use of these substrates alone explains the observed growth. Nevertheless, the preferential decrease of nitrogen-containing compounds suggests that these substances at least served as nitrogen source. This agrees with the observation that N2 fixation was not detectable.

Growth and substrate use in natural seawater

The overall concentration of amino acids in the natural seawater was already initially quite low and did not further decrease during the incubation. Thus, amino acids did not sustain growth or survival of cells. The compositional analysis of DOM showed a decrease of two groups of compounds. One of them was likely containing carbohydrate-like compounds with nitrogen and sulfur. These compounds are most likely thiosugars and/or aminosugars and may therefore have also served as nitrogen source. In

addition, we observed a decrease intensities relative in of compounds with low O/C and H/C ratios containing sulfur but no nitrogen. Compounds with low amounts of oxygen and hydrogen in comparison to carbon are typically condensed or aromatic hydrocarbons. Since it cannot be excluded that these compounds were lost abiotically, e.g. by absorption to the glassware, it needs to be further investigated if the bacteria indeed metabolized these molecules complex during growth. Notably, during growth of Pseudovibrio sp. strain FO-BEG1 in natural seawater, we observed a decrease of different groups of substances compared artificial to seawater and preferentially substances containing sulfur decreased.

The use of multiple substrates The potential use of different substrates under oligotrophic conditions was shown by the biolog experiment. The bacteria were able to metabolize different types of organic compounds, such as sugars (e.g. D-raffinose and D-trehalose), amino acids (L-serine, glutamic acid). carboxylic acids (glucuronic acid, acetic acid) and amide (glucuronamide). These compound classes were also

present as contaminations in the artificial seawater medium and decreased during growth. This is in agreement with studies on E. coli showing a broad potential to use different substrates after adaptation to carbon starvation (Ihssen and Egli, 2005).

Even though the substances decreasing during growth, as revealed by ESI FT-ICR-MS, tended to cluster into certain groups with a specific ratio of O/C and H/C, the overall pattern showed a broad simultaneous use of many substrates both in artificial and natural seawater. In contrast to the biolog experiment, this does not show the potential to use a substrate, but the actual decrease of compounds present in original concentrations. Using different compounds simultaneously may enable bacteria to grow on very low concentrations of each of the different substrates (Lendenmann et al.. 1996; Kovárová-Kovar and Egli. 1998), if a substrate does not repress enzymes for another less efficient one (reviewed in Egli, 2010). This strategy, together with the potential to use substrates, which are not present but may become available, enables bacteria to survive in habitats with a low and

fluctuating supply of nutrients, as it is found in the oceans.

Conclusions

The data presented in this study demonstrate that contaminations can arise from many different sources (e.g. chemicals, bottles, humans or plastics), which in turn might support growth of oligotrophic bacteria under conditions. Moreover. even under extremely oligotrophic conditions, the isolated bacteria were not in a resting state, but showed a moderate growth, even though nitrogen, carbon and energy sources were limiting factors at the same time. The investigated Pseudovibrio sp. FO-BEG1 uses many different substrates of under types nutrient-poor conditions as demonstrated by the FT-ICR-MS data (Figure 4.1.3).

In our case, amino acids were not the primary substrate for growth, but rather a complex mixture of organic compounds, preferably containing nitrogen. Furthermore, we were able to show that ESI FT-ICR-MS is a strong tool to investigate bacterial growth under lownutrient conditions.

Table S.4.1: Cell numbers of

isolate Pseudovibrio strain FO-BEG1 derived from different amounts of carbon added to the medium. Carbon in form of glucose was added to а Pseudovibrio strain FO-BEG1 culture in 2 different concentrations. As a negative culture without control a addition of carbon was used. To ensure carbon-dependent growth, ammonium was added to the medium (with and without carbon addition) as nitrogen source.

Figure S.4.1: Amount of carbon needed for specific cell number. From additions of glucose to the medium (Table S.4.1) the amount of carbon needed for growth of isolate FO-BEG1 was calculated by subtracting the cell numbers without carbon addition (as negative control) from the numbers with carbon cell addition and plotting amount of carbon versus cell numbers produced. The amount of carbon needed for 105 cells mL-1 was calculated to be 3 ^mol C L-1 and for 104 cells 1 [^]mol C L-1.

4.2 Facultatively oligotrophic bacteria isolated from the habitat of large sulfide-oxidizers

Abstract Axenic cultivation of large chemolithoautotrophic bacteria belonging to the genus Beggiatoa succeed only rarely. Growth of the large sulfideoxidizers often seems to be dependent on the presence of heterotrophic prokaryotes, similar to the often described associations of cyanobacteria and heterotrophs. Recently, we observed that the growth of the marine, chemolithoautotrophic Beggiatoa strain 35Flor sp. depends on the presence of the a-Proteobacterium Pseudovibrio strain FO-BEG1. sp. Furthermore, we found that this bacterium, besides heterotrophic growth on organic-rich medium, is capable of growth under extreme nutrient deficiency in artificial and natural seawater. This observation inspired us to investigate whether we could other isolate facultative oligotrophs from overlaying water of Namibian sediment, an environment known to contain a number of different large sulfide- oxidizers belonging to Beggiatoaceae. the family Indeed, we succeeded to obtain 14 new strains closely related to known marine bacteria, all of which were capable of growth under extreme nutrient deficiency. The potential of these isolates to support growth of the

large sulfide-oxidizing bacteria can now be studied in culturebased experiments.

Introduction

bacteria. such Large as Beggiatoa spp. or filamentous cyanobacteria, often live together with heterotrophic prokaryotes and these associations seem to be the reason for the inability of axenic cultivation of the large bacteria (Burton and Morita, 1964: Cohen and Rosenberg, 1989; Palinska et al., 1999; Morris et al., 2008). Different reasons for these interactions have been proposed, such as the recycling of Cacbon điôxít or the reduction of the oxygen concentration (Kuentzel, 1969: Paerl and Pinckney, 1996). It is known that Beggiatoa spp. typically lack the gene for catalase (Larkin and Strohl, 1983), but since aerobic respiration produces reactive oxygen species (ROS, Tapley et al., 1999) an efficient protection against such molecules is needed. Therefore, Beggiatoa might depend on the spp. catalase. which enzyme catalyzes the disproportionation of hydrogen peroxide to oxygen and water, or other protection of the associated systems heterotrophs against ROS. The positive effect of catalase and of

accompanying heterotrophic bacteria on the growth of Beggiatoa filaments (Burton and Morita, 1964; Strohl and Larkin, 1978; Gude et al., 1981; Nelson et al., 1986b) and, furthermore, the accumulation of peroxides in cultures without catalase or accompanying bacteria was shown (Burton and Morita, 1964). Recently, we found that both Pseudovibrio sp. strain FO-BEG1 and Pseudovibrio denitrificans (DSM number 17465) support growth of the marine chemolithoautotrophic Beggiatoa sp. strain 35Flor (Chapter 3.1). Both bacterial strains heterotrophic are organisms (Chapter 3.2, Shieh et al., 2004). Additionally, we have shown that the newly isolated Pseudovibrio sp. strain FO-BEG1 can grow under extremely oligotrophic conditions and its substrate use in pure artificial and natural seawater was studied in detail (Chapter 4.1).

The aim of the present study was heterotrophic, isolate to facultativelv oligotrophic bacteria from Namibian sediments, the habitat of large sulfide-oxidizers, to investigate how facultative common oligotrophy is among bacteria associated with large sulfideoxidizers.

Here, we report the successful isolation of 14 facultatively oligotrophic bacteria from water overlaying Namibian sediments using a method relying on the change from oligotrophic to eutrophic growth conditions, called the CANgrow-method (changing availability of nutrients growth- method).

In contrast to earlier methods for the isolation of marine bacteria, the artificial oligotrophic medium used here, is defined and contains much lower nutrient concentrations. Three initial transfers strongly preselect for bacteria, which can grow under extreme nutrient deficiency.

Subsequently, three transfers on nutrient-rich agar plates select for facultatively oligotrophic bacteria and are used to obtain pure cultures. Finally, the ability of the isolates to grow oligotrophically is ensured by at least seven transfers in pure artificial seawater.

Material and methods Samples

The new bacterial strains were isolated from oceanic bottom water overlaying Namibian sediments that harbor different large sulfur bacteria (sample

acquisition described in Salman et al., 2011). All samples were stored at 4°C. In addition to the new isolates, the Pseudovibrio denitrificans type strain (DSM number 17465) was purchased from the German culture collection DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH. Braunschweig, Germany) and oligotrophic cultivated under conditions.

Growth media and cultivation conditions

For cultivation and isolation, two different media were used, an oligotrophic and a eutrophic medium. The liquid, oligotrophic medium was composed as described above (Chapter 4.1), but prepared under synthetic air atmosphere (20% O2 in N2; H2O < 3 ppm-mol, CnHm < 0.1ppm-mol, CO < 1 ppm-mol, CO₂ ppm-mol). < 1 Furthermore, bottles were filled only with 50 mL medium and the medium was not cleaned using solid phase extraction. This medium was used for all oligotrophic cultivation experiments. The solid. eutrophic medium was composed as described above (Chapter 4.1, Methods section "Biolog experiment"). All incubations in oligotrophic and eutrophic media were performed

without shaking at 28°C in the dark.

CANgrow-method (changing availability of nutrients growth-method)

For isolation. 50 mL of oligotrophic medium were inoculated with 100 |iL seawater sample (from off shore Namibia). The cultures were transferred (100 |iL enrichment in 50 mL fresh medium) at least three times in oligotrophic medium with incubation periods between the transfers of at least Aliquots of the one week. oligotrophic enrichments were then plated on eutrophic, solid medium and single colonies were transferred three times on eutrophic medium. Finally, at least another seven transfers (100 |iL culture in 50 mL fresh medium) were performed in oligotrophic liquid, medium (Figure 4.2.1).

Sequencing of 16S rDNA genes and phylogenetic analysis Eutrophically grown colonies were picked and directly transferred to a polymerase chain reaction (PCR) mix containing 1x PCR MasterMix (Promega, Mannheim, Germany) and 1 jimol L-1 of each primer (GM3F

and GM4R in Muyzer et al., 1995). The PCR program applied follows: was as initial denaturation at 95°C for 5 minutes, 32 cycles of 95°C for minute, 50°C for 1 30 seconds and 72°C for 90 seconds followed by a final elongation at 72°C for 7 minutes. PCR products were cloned using the TOPO TA Cloning® Kit for Sequencing (Invitrogen, Karlsruhe, Germany) according to manufacture's instructions. Sequencing of the cloned inserts was performed using the Big Dye Cycle Sequencing Kit (Applied Biosystems, Carlsbad, CA, USA) and sequences were analyzed on an ABI Genetic Analyzer 3130x (Applied Carlsbad. CA. Biosystems, USA).

full-length Nearly sequences were assembled with SeqMan (Lasergene software package, DNAStar, Madison, WI, USA) deposited and in the DDBJ/EMBL/GenBank databases under accession numbers FR716535 to FR716549. Phylogenetic analysis of the 16S rDNA sequences was performed using the ARB software package (Ludwig et al., 2004) and release 102 of the SILVA SSURef database (Pruesse et al., 2007). Tree reconstruction with

likelihood maximum and neighbour joining methods was performed using 0, 30 and 50% positional conservatory filters that exclude highly variable regions. Finally, a consensus tree based on the different reconstruction methods was built. A total number of 102 nearly full-length sequences was used for initial calculation to stabilize tree topology. Displayed in the final tree (Figure 4.2.2) are the sequences of the 15 isolates grouped with their closest relatives. Cell counts Cell counts were performed as described in Chapter 4.1. Measurement of dissolved organic carbon (DOC) Dissolved organic carbon (DOC) was measured in the oligotrophic medium using a Shimadzu TOC-VCPH total organic carbon (Shimadzu, analyzer Kyoto, Japan). Acidification of samples was performed with 1% v/v 2 mol L-1 HCl followed by sparging with synthetic air in order to remove inorganic carbon. The detection limit of the method was 5 |imol C L-1 (0.06 mg C L-1). The analytical accuracy was confirmed with reference material (deep Atlantic seawater) and low carbon water from the consensus reference materials (D.A. program Hansell, University of Miami,

Coral Gables, FL, USA).

Results

Isolation of facultatively oligotrophic bacteria Applying the CANgrow-method, facultatively which favors oligotrophic bacteria (Figure 4.2.1), we obtained 14 isolates of marine bacteria that were able to adapt from oligotrophic to eutrophic growth conditions and vice versa within 3 to 5 days.

We were able to obtain pure cultures of these strains by transferring single colonies from organic-rich agar plates and could show that these colonies were able to grow oligotrophically by at least seven transfers in pure artificial seawater.

Changing availability of nutrients growthmethod (CANgrow-method) Figure 4.2.1: Comparison of strategies for the isolation of oligotrophic bacteria. Three different methods for the obligately isolation of or facultatively oligotrophic bacteria are compared with the newly developed CANgrowmethod (Changing availability of nutrients growth- method).

Bacteria from three different

phyla were isolated with the CANgrow-method. Phylogenetic relations are shown in a 16S rDNA sequence tree including the Pseudovibrio sp. strain FO-BEG1 99.5% showing > sequence identity to the Pseudovibrio denitrificans type strain (Figure 4.2.2). Except for two isolates, which were closely related to Arthrobacter spp. (Actinobacteria) on 16S rDNA level (99.8 to 99.9% identity to closest related strain), all isolates members of were the Proteobacteria. The remaining 12 isolates were members of the Gammaproteobacteria, two of them grouping with Kangiella spp. (96.4% identity to closest strain) related and ten withMarinobacter spp. (98.7 to 100% identity to closest related strain).

Figure 4.2.2: Phylogenetic trees based on a total number of 102 nearly full-length sequences were calculated with maximum likelihood and neighbor joining different methods using positional conservatory filters. The displayed tree is an excerpt from the consensus tree that was inferred based on the different reconstruction approaches. The 14 new isolates and strain FO-BEG1 are grouped with the most closely related type strains. Isolated strains listed in one line

feature an identical 16S rDNA sequence, whereas isolated strains listed directly one below the other are 99.6 to 99.9% identical in their 16S rDNA sequence. The isolates FO-NAM13, 14 were only able to grow for six transfers under oligotrophic conditions and are therefore marked grey in the tree.

Oligotrophic growth

The artificial seawater contained a DOC concentration of 0.18 \pm 0.06 mg C L-1 (15 \pm 5 |imol C Growth L-1). curves in oligotrophic artificial seawater medium (Figure 4.2.3) were obtained for one isolate from phylogenetic each group (Actinobacteria, Alphaand Gammaproteo- bacteria). We observed a clear increase in cell numbers starting from 4 to 20 cells mL-1 to a final density of 104 to 105 cells mL-1. The proteobacterial isolates showed growth after 2 days and reached a stationary phase after 5 to 7 davs incubation. of Both actinobacterial isolates were characterized by delayed growth that was detectable after 12 days. Here, the stationary phase was reached after about 20 days of incubation. Moreover, all isolates except for the two isolated Kangiella strains were

able to grow after at least seven the transfers in oligotrophic seawater medium. The two closely isolates related to Kangiella spp. were not able to after more than grow six transfers under oligotrophic conditions. The isolates closely related to Marinobacter spp. reached the highest final cell numbers (Figure 4.2.3 D). whereas the actinobacterial isolates showed lowest final cell 4.2.3 densities (Figure C). Furthermore, we observed growth under oligotrophic conditions for the type strain Pseudovibrio denitrificans (DSM number 17465). The growth curve of this strain (Figure 4.2.3 B) showed the same pattern as the Pseudovibrio sp. FO-BEG1, which is currently growing in the 26th oligotrophic transfer in purified highly artificial seawater.

Figure 4.2.3: Oligotrophic growth curves of (A) strain FO-(Alphaprobteobacteria, BEG1 related to Pseudovibrio spp.), **(B)** Pseudovibrio denitrificans type strain (Alphaproteobacteria), (C) FO-NAM2 isolate (Actinobacteria, related to Arthrobacter spp.) and (D) isolate FO-NAM6 (Gammaproteobacteria, related

to Marinobacter spp.).

Discussion

Isolation of facultatively oligotrophic bacteria with the CANgrow-method

Each strategy that is applied for the isolation of bacteria selects for a specific physiology and metabolism. Most approaches used recently for the isolation of oligotrophic bacteria are based on the dilution to extinction method (Button et al., 1993; Connon and Giovannoni, 2002) and thereby select for the most abundant microorganisms. In contrast, the CANgrow-method favors bacteria, which might not have been particularly abundant in the original inoculum, but can adapt fast to changes in nutrient availability. Previous studies have shown that many bacteria oligotrophic isolated under conditions can adapt to nutrientrich media (Yanagita et al., 1977; MacDonell and Hood, 1982; Carlucci et al., 1986).

Also, the single-cell encapsulation method (Zengler et al., 2002) is based on oligotrophic growth followed by eutrophic growth conditions. This cultivation approach is similar to ours (Figure 4.2.1), but we used artificial seawater of

very low DOC concentration rather than natural seawater. The measured DOC concentration of 0.18 mg C L-1 is two to five times lower than in natural seawater (Schut et al., 1997: Hansell al.. 2009). et Nevertheless, we are certain to observe true growth under these extremely oligotrophic conditions, since we performed at least seven transfers in purified artificial seawater with each of the isolated strains and 26 transfers for Pseudovibrio sp. FO-BEG1, for which we also identified growth substrates under oligotrophic conditions (Chapter 4.1).

The initial cell number after each transfer was 4 to 20 cells mL-1. Thus, 9 to 15 divisions must occurred between two have consecutive transfers to account for a final cell number of 104 to 105 cells mL-1 as observed at the end of the growth phase. This accounts for 60 to 100 divisions during a total of 7 incubations. Therefore, we conclude that all isolates are viable under oligotrophic conditions by the definition of Button et al. (1993), who characterize organisms as viable after having performed 13 divisions which we observe already after 1 to 2 transfers.

Diverse phylogeny of facultatively oligotrophic bacteria

The isolated bacterial strains belong to different phylogenetic groups, namely Alphaproteobacteria, Gammaproteobacteria and Actinobacteria. Growth under oligotrophic conditions as observed for the isolates FO-NAM13 and FO-NAM14 (related to Kangiella spp.), has so far never been described for any member of the genus Kangiella.

Long-term starvation and survival but not growth in the absence of external nutrients has previously been reported for Arthrobacter spp. and was to be proposed fueled by internally stored reserve material (Zevenhuizen, 1966).

In our study, isolates FO-NAM1, FO-NAM2 (related to Arthrobacter spp.) were transferred in oligotrophic medium more than seven times and active growth was always observed. Hence, we assume that the cells gained energy and produced biomass from an external source, since we determined growth and not only survival. Bacteria belonging to

the genus Marinobacter are known to be diverse in physiology (e.g. Gauthier et al., 1992; Huu et 1999). al.. Substrate uptake under low nutrient conditions was shown for Marino- bacter arcticus (Button et al.. 2004). but oligotrophic growth was not studied in detail. In contrast, the isolates FO-NAM3 to FO-NAM12 (related to Marinobacter spp.) actively grow under nutrient deficiency.

Cell numbers of the isolated growing strains under oligotrophic conditions differed between the phylogenetic groups. The cell numbers of isolates related to Marinobacter spp. were higher than cell numbers of the other isolates, whereas the isolates related to Kangiella spp. did not grow for more than six transfers. This suggests that the different bacteria vary in their capabilities adapting to oligotrophic of growth conditions or that the present organic and inorganic material can be used differently among the isolates. This might be due to the presence of different metabolic pathways and a different number and type of

high affinity transporters necessary for scavenging nutrients at such low concentrations. Taken together, our data support earlier findings (Yanagita et al.. 1977; MacDonell and Hood, 1982; Carlucci et al., 1986) that the ability to switch between extreme nutrient deficiency and affluence of substrate is not unusual or restricted to a certain phylogenetic group, even if the level of adaptation might differ. Therefore, we propose that the ability to grow under extreme substrate limitation is much more widespread among known heterotrophic bacteria than currently recognized.

As expected, the heterotrophic bacteria isolated from the habitat of large sulfide-oxidizers are phylogenetically diverse. It was possible to isolate bacteria following a similar metabolic facultative strategy _ oligotrophy. If these bacteria are associated with sulfide-oxidizers, if their metabolic activity is somehow related to the presence or absence of the lithothrophs or whether they can support growth of the large sulfur bacteria by scavenging ROS needs to be further investigated.

Sir William Lawrence Bragg (1890-1971)

Chapter 5 Concluding remarks and outlook

The findings of this thesis contribute to different topics ranging from migration behavior of mat-forming sulfur bacteria via associations between different bacteria to the lower limits of bacterial growth. Nevertheless, all these different aspects are linked to each other. The growth of Beggiatoa sp. filaments. for which we discovered an unusual migration behavior (Chapter 2), depends on the presence of Pseudovibrio sp. (Chapter 3), which is capable of growth under extreme nutrient deficiency (Chapter 4). This chapter (Chapter 5) connects all these different aspects, including preliminary data, which are not presented in the previous chapters and considers the obtained results in a broader context. Furthermore, a detailed discussion of special proceedings and precautions during performed experiments is given. Finally, this chapter ends with an outlook for future research concerning the discussed topics. Associations between small heterotrophic and larger bacteria

Axenic cultivation of large marine Beggiatoa spp. under chemolithoautotrophic conditions is difficult and only rarely successful (Nelson and Jannasch, 1983; Nelson et al., this 1986a). In thesis. a successful and stable cultivation of the marine chemolithoautotrophic Beggiatoa sp. strain 35Flor (6 |im in diameter) is described. This Beggiatoa strain grows solely in the presence of an accompanying heterotrophic organism, the Pseudovibrio sp. strain FO-BEG1 (Chapters 2 and 3). We propose that the accompanying bacterium protects the Beggiatoa sp. from oxidative stress because we have shown that the genome of the accompanying organism possesses more than 20 genes for the enzymes catalase, superoxide dismutase and peroxidase (Chapter 3.2), whereas sulfideoxidizing bacteria of the genus do Beggiatoa typically not possess the gene for the enzyme catalase (reviewed in Larkin and Strohl. 1983). Similar to large sulfideoxidizers. also large marine cyanobacteria can often be found

cyanobacteria can often be found associated with small heterotrophic bacteria and it is difficult to sustain axenic cultures (Palinska et al., 1999;

Morris 2008). The al., et association of small heterotrophic bacteria with larger bacteria, such as Beggiatoa spp. or cyanobacteria in microbial mats is a common observation (Cohen and Rosenberg, 1989; Gemerden. van 1993). The complex interactions between cyanobacteria and heterotrophic bacteria have been studied and different reasons for their interactions have been proposed. These reasons include recycling of Cacbon điôxít needed by the cyanobacteria (Kuentzel, 1969), production of growth factors and formation of anoxic microniches due to aerobic respiration (Paerl and Pinckney, 1996). Interestingly, for cyanobacteria of the genus Prochlorococcus, it was also proposed that the function of the heterotrophs is to scavenge reactive oxygen species (ROS) because the Prochlorococcus spp. themselves have no gene encoding for a catalase or peroxidase (Morris et al., 2008). Furthermore, a mutant of the accompanying heterotroph lacking the gene for catalase was found to not support growth of the cyanobacteria, whereas the addition of catalase had а positive effect on their growth (Morris et al., 2008). These observations concerning the association between cyanobacteria and accompanying

heterotrophic bacteria point in the same direction as the observations presented here on association the between Beggiatoa sp. and Pseudovibrio sp. (Chapter 3). It suggests that the protection system of the large bacteria from ROS might be less efficient than the ones of smaller heterotrophic bacteria.

Cyanobacteria and Beggiatoa spp. are often found to share one habitat as for example in microbial mats (van Gemerden, 1993) or in biofilms associated with the black band disease of scleractinian corals (Richardson, 1996). Therefore. in these common habitats they might also live together with similar types of heterotrophic bacteria. The with bacteria associated cyanobacteria belong to a diverse range of phylogenetic groups, including Actinobacteria, Bacteroidetes. Alpha-, Beta-, Gammaand Deltaproteobacteria (Salomon et al., 2003; Kolmonen et al., 2004; Hube et al., 2009). The isolation phylogenetically of different bacteria from the habitat of large sulfide-oxidizers (Chapter 4.2) indicates that also the large sulfideoxidizers are not restricted to the association with bacteria of one phylogenetic group. It seems more likely that the large bacteria depend on specialized functions performed

by certain types of the associated bacteria rather than the presence of a specific phylogenetic group. Very recently, a metagenomic sequence analysis of bacterial communities associated with the green macroalgae Ulva australis revealed that not the phylogeny of the associated bacteria but the function of their genes was correlated with the associations (Burke et al.. 2011). Consequently, it was proposed that the functional genes rather than the 16S rDNA genes are more appropriate to investigate associations in microbial communities (Burke et al., 2011).

Toxicity factors and migration behavior of Beggiatoa filaments The growth of Beggiatoa spp. depends on oxygen and sulfide, but both substances can also be bacteria if harmful to the concentrations exceed a critical threshold (Winogradsky, 1887; Moller et al., 1985). Close relatives of Beggiatoa spp. belonging to the genus Thiomargarita can be found in sulfidic sediments with sulfide concentrations of 100 to 800 imol L-1 (Schulz et al., 1999) or even up to 22 mmol L-1 (Bruchert al., et 2003). Moreover, these bacteria can also tolerate atmospheric oxygen levels while being exposed to

lower sulfide concentrations (0 to 100 |imol L-1) at a pH of 7.3 (Schulz et al., 1999; Schulz and Beer. 2002). de However. Thiomargarita spp. cells are not as motile as Beggiatoa spp. and as a consequence they can not themselves position in the transition zone of oxygen and sulfide. Instead, the cells wait for resuspension of the sediment to get into contact with oxygenated, nitrate-containing seawater (Schulz et al., 1999).

In contrast, Beggiatoa filaments are motile and built up mats between the opposing gradients oxygen and sulfide of (Winogradsky, 1887; Keil, 1912; JOrgensen, 1977; Nelson et al., 1982: Nelson and Jannasch. 1983). Consequently, Beggiatoa filaments usually get into contact with oxygen and sulfide at the same time, since they consume the two gases, they lower the concentrations and steepen the gradients (Nelson et al., 1986a). However, depending on the thickness of the Beggiatoa mat, some filaments might not be in direct contact with oxygen and sulfide at the same time (Nelson et al., 1986b). Taken this into account, the results presented in this thesis (Chapter 2.1) suggest that sulfide is probably more harmful to the cells under oxic conditions because the aerobic sulfide oxidation leads to a

decrease in pH (Winogradsky, 1887) and as a consequence more sulfide outside the cells is present in form of H2S. In the presented experiments (Chapter 2.1) we measured a pH of 6.5 within the mat, leading to about 70% of the sulfide being present in form of H2S (compared to only about 30% present as H2S at pH 7.3). This uncharged, harmful gas can easily diffuse into the cells where it can act as a strong reductant and binds to iron in cytochromes, by this blocking the cellular respiration. Thus, the bacteria probably have to perform sulfide oxidation to detoxify the inside of the cells. At high sulfide fluxes the cells obviously accumulate large amounts of storage compounds during this process and might eventually burst. To prevent this, the bacteria have to dispose of the internal storage compounds. In the anoxic regions the pH is higher and sulfide predominantly occurs in form of HS- which can not diffuse into the cells and might only get inside via ion channels or transport systems.

In this thesis (Chapter 2.1), a new strategy to cope with high sulfide fluxes is proposed. The bacteria actively migrate into anoxic regions with high sulfide concentrations. Here, the aerobic

sulfide oxidation is stopped and with this also sulfur deposition. The bacteria can then reduce the intracellular sulfur with internal PHA to form sulfide. This represents novel strategy а explanation for the presence of Beggiatoa filaments in anaerobic habitats and shows that filaments actively migrate into anoxic, sulfidic regions. Previously, downwards migrations were typically observed in habitats containing nitrate and there the anaerobic sulfide oxidation with nitrate lowered the diffusion zone of sulfide and separated the oxygen and sulfide gradients over up to a few centimeters (MuBmann et al., 2003; Sayama et al., 2005; Hinck et al., 2007; Preisler et al., 2007).

Although Beggiatoa spp. also require oxygen for growth (unless an alternative electron acceptor is present) they show phobic reactions to higher (above 5% air saturation) oxygen concentrations (Winogradsky, 1887; MOller et al., 1985). During aerobic sulfide oxidation the production of oxygen radicals and. moreover. chemiluminescence was shown to occur (Tapley et al., 1999). As mentioned above, we propose that the Beggiatoa sp. 35Flor requires the accompanying

organism to protect themselves against reactive oxygen species (Chapter 3.1). However, no correlation between the catalase activity of heterotrophic, associated cells and the beneficial effect of their cyanobacteria presence on (Prochlorococcus sp.) was found (Morris et al., 2008). In fact, the heterotroph with the lowest catalase activity was the only strain able to support growth of cyanobacteria. all studied Consequently, the dependency of the large bacteria on small heterotrophic bacteria can not be completely explained by their possession of a catalase enzyme. During our studies on the coculture of Beggiatoa sp. and Pseudovibrio sp., the possibility that nitric oxide (NO) might be involved in the reaction counteracting oxidative stress arose. In oxygen-sulfide gradient co-cultures with high sulfide concentrations, the NO signal in Pseudovibrio cells, stained with a copper-based fluorescent probe (CuFL, Lim et al., 2006), was higher compared to cells exposed to a low sulfide flux (Figure 5.1). This increase in NO signal was also inducible when hydrogen peroxide (H2O2) was added to co-cultures with a low sulfide flux or to pure cultures of the isolated Pseudovibrio sp. (growing in seawater medium

containing glucose and ammonia). Under both conditions, the enhanced signal was visible in the interior of the cells and not in the surrounding medium. The used dye is specific for NO and no interaction with H2O2 or other reactive oxygen and nitrogen species, such as HNO, NO2-, NO3- and ONOO-, could be detected (Lim et al., 2006).

Figure 5.1: Nitric oxide staining (copper-based fluorescent probe) of Pseudovibrio sp. FO-BEG1 cells in coculture with Beggiatoa sp. 35Flor at high and low sulfide flux (12.6 and 50.4 mmol m 2 d 1, respectively) and in Pseudovibrio sp. FO-BEG1 pure cultures. White bars show measurements without the addition of hydrogen per-oxide and grey bars show those with 0.35% H2O2 added. (preliminary imaging data, performed together with M. Beutler)

NO is known to protect against oxidative stress in other bacteria. In Bacillus subtilis, the addition of NO has been shown to lead to an increase in resistance against H2O2 by 100fold (Gusarov and Nudler, 2005). The enzymes of the group nitric oxide synthases (NOS) can produce NO and

citrulline from L-arginine and oxygen and are typically known from eukaryotes (Alderton et al., 2001). However, recently genes encoding for NOS-like enzymes were found also in different gram-positive and some gramnegative bacteria, and also the NOS-dependent NO production could be shown (Adak et al., 2002a; Adak et al., 2002b; Gusarov and Nudler, 2005; Agapie et al., 2009; Schreiber et al., 2011).

Interestingly, we found NOSrelated domains (Filippovich, 2010) in the genome of the investigated Pseudovibrio sp. FO-BEG1 (Schwedt et al.. unpublished data). A small domain of yet unknown function is followed by an amine oxidase domain (known to oxidize Lamino acids) and а flavodoxin/nitric oxide synthase domain in the genome sequence. This opens up the possibility that NO production might be involved in the reaction to ROS in the investigated Pseudovibrio strain FO-BEG1. sp. The production of NO as a protective measure against oxidative stress in Bacillus subtilis cells leads to an enhanced catalase activity, which was shown by comparison of wild type to Anos deletion mutants (Gusarov and Nudler,

2005).

In that study, the bacteria were cultivated in a complex medium with yeast extract containing free amino acids. In the pure culture experiments presented here, the medium contained ammonia, as the sole nitrogen source, which could have potentially been used to produce NO.

In our co-culture experiments together with Beggiatoa sp., no fixed nitrogen source was present, but the investigated Beggiatoa sp. are able to fix N2 (Henze, 2005). The genome of the accompanying organism does not contain any gene encoding for nitrogenase enzyme a (Schwedt et al, unpublished data). The transfer of fixed nitrogen from sources cyanobacteria associated to bacteria is а common observation (Paerl, 1984). It may well be that also the Beggiatoa sp. transfer fixed nitrogen to the accompanying bacteria. Nevertheless. taking into consideration that dyes can unspecifically bind to different that compounds and the production of NO in our study direct was not proven by these measurements. considerations remain speculative and await further investigation (see outlook). Apart from chemical substances,

such as oxygen and sulfide, also light is known to be a potential cause of phobic migration reactions of Beggiatoa filaments (Winogradsky, 1887; Nelson and Castenholz, 1982; Moller et al., 1985). The Beggiatoa sp. that we investigated showed an unusual reaction to blue/green light. Application of a blue or green light source (intensity: 67 |iE m-2 s-1) above or below the culture tube induced an immediate downwards movement of ิล subpopulation of filaments into the anoxic part of the culture tube when cultivated under a high sulfide flux (Chapter 2.2). The downward movement also occurred in the dark, but solely in cultures where a mat at the oxic-anoxic transition had already been established for about 10 days. The lower subpopulation was established 2 to 3 days after the downwards migration started (Chapter 2.1). Applying a blue or green light source in close proximity to the culture tube induced and also enhanced this filament movement and within a few hours the lower subpopulation was observed (Chapter 2.2). chemiluminescence Because occurs during chemical sulfide oxidation (Tapley et al., 1999) at the transition between oxygen and sulfide, it can be speculated that light at low intensities might

be involved in the migration and/or mat formation processes of Beggiatoa filaments, but this remains to be studied in the future (see outlook).

The lower limits of bacterial growth

In contrast to the large Beggiatoa filaments, most bacterial cells are not visible with the naked eye. However, bacterial growth can lead to macroscopically visible colonies on nutrient-rich agar plates or cause turbidity in nutrient-rich liquid media due to high cell densities, whereas under nutrient limitation cell densities will be low and the small bacterial cells might not cause turbidity. Therefore, the build-up of bacterial biomass in liquid low-nutrient media has to be quantified in a different way than optical turbidity measurements. Although, there might be no measurable growth, the still cells might be metabolically active. This is due to the fact that there is a difference between biomass production and activity of bacterial cells. Although the consumption of substrate is essential for the cells to grow and build-up biomass, the opposite is not the case, as cells do not necessarily grow while

utilizing substrate (del Giorgio and Cole, 1998). Therefore, the formation of biomass, called bacterial production (BP) has to separated from the be consumption of substrate, called bacterial respiration (BR). The bacterial growth efficiency (BGE) is defined as the quantity of bacterial biomass resulting from a certain amount of substrate respired (del Giorgio and Cole, 1998). The substrate is used by the bacteria for catabolic and anabolic purposes generating ATP (Adenosine-5'- triposphate) and cell biomass, respectively. The BGE can be determined by isotope-labeling techniques (BR and BP), rates of protein or DNA synthesis (BP), cell counts (BP), consumption (BR). oxygen Cacbon diôxít production (BR) and changes in DOC and POC (BR and BP) (del Giorgio and references Cole. 1998 and therein).

Under oligotrophic conditions, the concentrations of substrates and cell numbers are extremely low. Therefore, most of these methods may not be sensitive enough and measured values are close to or below the limit of detection. Thus, new routines and methods have to be developed or methods have to be

refined to be suitable for studying bacterial growth under extreme nutrient deficiency.

Classical dissolved organic carbon (DOC) measurements, which are used as a parameter for the amount of dissolved organic matter (DOM) in environments with a low amount of nutrients, have a detection limit of about 0.5 |imol C L-1 (0.006 mg C L-1). However, the observed cell numbers in our medium (Chapter 4) are so extremely low that about 1 |imol L-1 of carbon would be enough to explain the observed growth. Consequently, classical the method might not provide sufficient sensitivity to detect potential small changes in DOC. The results presented in this thesis show that electospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) sufficient resolution provides and can be used to study bacterial growth under oligotrophic conditions. Furthermore, this technique information gives on both potential fixed carbon and nitrogen sources of the bacteria. Combined with the measurement of amino acids by high performance liquid chromatography (HPLC) and techniques, isotope-labeling

khối công hưởng cyclotron ion

bacterial growth in oligotrophic seawater can be studied in detail. However, this technique does generally not give quantitative information and as a consequence respiration rates under oligotrophic conditions still remain unknown.

The risk of impurities

Even though no electron donor is added to an oligotrophic there can still be medium. impurities present that might support growth and lead to the formation of biomass and/or metabolic activity of the cells (Chapter 4). Studying bacterial under nutrient-poor growth conditions is challenging, since many different contaminations, such as macronutrients, trace elements or energy sources can occur.

Accordingly, when studying the physiology of bacteria growing under oligotrophic conditions, it is crucial to keep the medium and equipment contaminationfree for mandatory the substances for growth. Amino represent acids а serious contamination risk for seawater samples. Therefore, there are a number of precautions that have to be taken, such as working with gloves, combustion of glassware, avoidance of dust in the working room (working in

laminar flow hood) and use of chemicals of highest available quality (Dittmar et al., 2009). Also, during the measurements of quantity and composition of DOM typically all used equipment is pre-combusted if possible. All these precautions applied were during the preparation of the oligotrophic seawater medium and all further analyses presented in Chapter 4.1 of this thesis.

Furthermore, the medium might become contaminated with trace elements, which would probably not resemble a potential energy source but could be decisive for growth or no growth of microorganisms. To avoid the contamination with trace elements, equipment is usually washed with HNO3-(e.g. Fitzwater et al., 1982), which, however, represents an easily utilizable nitrogen source. For the experiments presented in this thesis (Chapter 4), a fixed nitrogen source was considered as worse contamination than elements. and the trace equipment was not washed with HNO3-.

In spite of all precautions, it is still extremely difficult to prepare a seawater medium without any contaminations.

However, if the contaminating substance is not used by the bacteria during growth, such as the PEG contamination in this study (Chapter 4.1), it might not disturb or influence further physiological analysis. The contamination can even be used to normalize other peaks in the mass spectra, if its peaks are high and consistent (as the PEG peaks in this study, Chapter 4.1).

Facultative oligotrophy

In addition to growth under oligotrophic conditions, the investigated Pseudovibrio sp. FO- BEG1 (Chapter 4) is capable of growing under eutrophic conditions as well and can switch within days from one trophic state to the other.

Under oligotrophic conditions, the bacterial growth efficiency is typically very low and varies with the supply of nutrients (del Giorgio and Cole. 1998). Furthermore, the investigated bacteria are limited in carbon, nitrogen and energy at the same time (Chapter 4.1). Consequently, they are supposed to have high maintenance energy costs maintain to crucial transport systems and enzymes prepared (del Giorgio and Cole, 1998). With increasing nutrient

supply, probably also the bacterial efficiency growth increases because the bacteria can exhibit higher growth rates only enzymes produce and necessary for the substrates available (reviewed in del Giorgio and Cole. 1998). Facultatively oligotrophic bacteria have to switch between oligotrophic and eutrophic growth conditions and as a consequence the cells have to also switch between both strategies for growth to adapt to the actual amount of substrates present.

The variation in nutrient availability is common in natural environments such as the open Bacteria attached ocean. to marine snow particles can exhibit very high growth rates (Alldredge et al., 1986; Alldredge and Gotschalk, 1990; Smith et al., 1992; Azam and Long, 2001; Ki0rboe and Jackson, 2001), while free-living bacteria in the open ocean are restricted in nutrients and consequently their growth rates are low or they even starve Ensign, (Boylen and 1970: Novitsky and Morita, 1976; Azam and Hodson. 1977: Novitsky and Morita. 1977: Tabor and Neihof, 1982; Ishida et al., 1989). Facultatively oligotrophic bacteria can adapt fast to nutrient

affluence or deficiency, while they have to up- or downregulate internal pathways of anabolism and catabolism. The investigated facultatively oligotrophic Pseudovibrio sp. FO-BEG1 is highly versatile with respect to its energy gain (Chapter 3.2 and Chapter 4.1). This feature makes the bacteria flexible and they are, moreover, capable to interact with other prokaryotes or possibly even eukaryotes (Chapter 3.2).

Already 30 years ago, it was suspected that two types of oligotrophic bacteria exist (Ishida and Kadota, 1981): 1. organisms, which disappear with increasing man-made eutrophication and 2. organisms, which can adapt fast to manmade eutrophication. In this thesis bacteria were not isolated from the oligotrophic open ocean, but from water directly marine sediments overlaying (Chapter 4.2). All of the isolated strains were able to adapt fast to the nutrient deficiency of the initial isolation medium. The observation that facultatively oligotrophic bacteria can also be isolated from non-oligotrophic indicates that water these bacteria might be more widespread and not limited to nutrient-poor environments. For

example, they might live attached marine snow to particles (e. g. Alldredge et al., 1986; Smith et al., 1992; Azam Malfatti. 2007 and and references therein). which represent nutrient hotspots for heterotrophic bacteria. and possibly the bacteria sink down to the sediment with these particles. We assume that many facultatively oligotrophic bacteria have been overlooked so far because they were not searched for in non-oligotrophic environments. Likewise, many more already known heterotrophic bacteria may be capable of growing under much poorer nutrient conditions than currently assumed.

Conclusions

In conclusion. the results presented in this PhD thesis (summarized in Figure 5.2) show that filaments of Beggiatoa sp. strain 35Flor react to high sulfide fluxes by migration into anoxic regions, where they reduce the amount of internal storage compounds. This migration can be enhanced or induced bv blue/green light for a yet unknown reason. We suggest that the accompanying sp. strain FO-Pseudovibrio BEG1 can detoxify reactive oxygen species (ROS), generally produced during sulfide

oxidation (Tapley et al., 1999), and might be responsible for the protection of Beggiatoa filaments, which are known to lack the gene for catalase (Larkin and Strohl, 1983). Possibly, production of nitric oxide (NO) by the Pseudovibrio sp. might also be involved in the protection against ROS. However, the origin of NO is unknown because no fixed nitrogen source was present in the medium of the co-culture and the heterotroph does not posses a gene encoding for nitrogenase. On the other hand, the Beggiatoa sp. can fix N2 (Henze, 2005) and it might be that a fixed nitrogen source is transferred from the sulfideoxidizer to the accompanying bacterium. The Pseudovibrio sp. examined in this thesis is a generalist able to gain energy in many different ways and can also grow under extremely nutrient-poor conditions. Furthermore, it possesses genes interact with proto and eukaryotes. We found that also other bacteria from the habitat of large sulfide- oxidizers can adapt fast from nutrient affluence to deficiency. Maybe these bacteria are able to also support growth of the large sulfide-oxidizers, but this needs to be investigated in the future.

Figure 5.2: Illustration of the results obtained in this PhD thesis concerning the migration behavior of Beggiatoa sp. and the co-occuring Pseudovibrio strain. Some results were supported by our data (black) while others are hypothesis and remain to be proven (blue). ROS = reactive oxygen species, NO = nitric oxide, N = nitrogen

Outlook

The results of my PhD thesis provide new insights into the migration behavior of large bacteria. sulfur associations between bacteria, and growth under extreme nutrient deficiency. Nevertheless, the obtained results also raise new questions that need to be addressed in the future.

We hypothesize that the Beggiatoa sp. filaments depend heterotrophic on the Pseudovibrio sp. because they do themselves possess not protective measure against oxidative stress (Chapter 3). However, direct evidence for this theory is still missing. То investigate the capability of other heterotrophic, catalasepositive bacteria or ROS scavenger to support growth of

the Beggiatoa sp., filaments from the lower subpopulation should be transferred without (or with only few) accompanying bacteria into fresh media. If growth is positive in the presence of the other catalase-positive bacteria or ROS scavengers, the transfer of Pseudovibrio sp. from the inoculation source has to be excluded, which can be tested by Fluorescence in situ hybridization.

The preliminary data on the staining of nitric oxide opens up the possibility that NO might be involved in the reaction with ROS (Chapter 5). However, to proof this, the production of NO has to be verified by direct measurement of NO with a NOxanalyzer or detection of NO by its molecular mass using mass spectrometry. The chemical reaction of NO with oxygen in water forming mainly nitrite (Ignarro et al., 1993) might complicate the direct measurement of nitric oxide. The sole nitrogen source in the coculture is N2. Therefore, it can be speculated that the interaction between the two bacteria is not only one-sided because of the two partners only the Beggiatoa sp. are known to fix N2 (Chapter 5). To investigate if a direct transfer of fixed nitrogen in the co-culture occurs. labeled nitrogen (15N2) can be added

and the label can be searched for in the Pseudovibrio sp. using mass spectrometry (e.g. nano secondary ion mass spectrometry).

We have shown that the Pseudovibrio FO-BEG1 sp. growing in pure culture under nutrient- poor conditions can also use typical substrates known from heterotrophic growth (Chapter 4.1). It still remains unclear if the observed growth is the same as typical heterotrophic growth only with less nutrients or if special regulating enzymes proteomic needed. are Α comparison between bacteria grown under nutrient deficiency under nutrient and grown affluence might provide more information on the growth and the regulation of enzymes under oligotrophic conditions.

The detailed analysis of used substrates during oligotrophic growth shows that the bacteria use multiple substrates at the same time under oligotrophic conditions (Chapter 4.1). However, only amino acids (which account only for a small fraction) were measured quantitatively and the overall

respiration remains rate Therefore. unknown. the measurement of oxygen consumption (e.g. using respiration microelectrode chambers) under nutrient-poor conditions could allow quantification and calculation of respiration the under rate oligotrophic conditions. Furthermore, the fact that we have both metabolites (detected by ESI FT-ICR-MS) and genes (closed genome of Pseudovibrio sp. strain FO-BEG1) may allow us to connect metabolites with genes present in the investigated organism in the future. Maybe, this will also help predicting new metabolic pathways.

Eventually, several heterotrophic strains, which were able to grow under both nutrient deficiency and affluence, were isolated during our studies (Chapter 4.2). The possibility of heterotrophic bacteria to grow under nutrientdeficient conditions might be a more widespread feature. To test this hypothesis, common heterotrophic bacteria from bacterial strain collections can be ordered and their ability to grow under nutrient-poor conditions can be tested.

Appendix	The	genus
Pseudovibrio		contains

interactions. Pseudovibrio has the genomic potential to attach to host cells, might be capable of interacting with the eukaryotic cell machinery, produce secondary metabolites and may supply the host with cofactors.

Introduction

The first strain of the genus Pseudovibrio has been isolated from coastal seawater in 2004 described and was as Pseudovibrio denitrificans - a marine. heterotrophic, facultatively anaerobic bacterium capable of denitrification and fermentation (Shieh et al., 2004). Two further type strains, P. ascidiaceicola (Fukunaga et al., 2006) and P. japonicus (Hosoya and Yokota, 2007), were isolated from a tunicate and coastal seawater, respectively. Physiologically, these isolates were not notably different from P. denitrificans. Besides the three type strains, Pseudovibrio spp.-related bacteria have been found in various studies throughout the world either by 16S rRNA gene analysis or direct isolation methods (Hentschel et al., 2001; Webster and Hill, 2001; Olson et al., 2002; Thakur et al., 2003; Thiel and Imhoff, 2003; Thoms et al., 2003; Agogué et al., 2005; Lafi et al., 2005; Enticknap et

al., 2006; Koren and Rosenberg, 2006; Sertan-de Guzman et al., 2007; Muscholl-Silberhorn et al., 2008; Riesenfeld et al., 2008; Kennedy et al., 2009; Rypien et al., 2010; Santos et al., 2010).

besides Ρ. Interestingly, denitrificans, P. japonicus and a Pseudovibrio spp.-related isolate from coastal, oligotrophic seawater (Agogué et al., 2005), all other strains belonging to this genus discovered until today found have been closely associated with marine invertebrates like tunicates. corals, and sponges.

Especially Porifera seem to harbor Pseudovibrio populations, e.g., as the dominating species of the culturable bacterial community (Webster and Hill, 2001; Muscholl-Silberhorn et al., 2008). Additionally, Pseudovibrio has been found in sponge larvae as the most abundant prokaryote, indicating vertical transmission of these bacteria in their hosts (Enticknap et al., 2006). Such a consistent pattern of Pseudovibrio spp. associated with sponges suggests that they are symbionts of those metazoa (Webster and Hill. 2001; Enticknap et al., 2006).

Whether the nature of this symbiosis mutualistic/ is commensalistic or whether Pseudovibrio rather spp. represent pathogens/parasites is uncertain, but the fact that Pseudovibrio spp. have been isolated only from healthy indicates that the sponges bacteria do not harm the host and might be even required for its health (Webster and Hill, 2001). Another shared feature is the of production secondary metabolites by many of the cultured Pseudovibrio strains. For instance, heptylprodigiosin, that compound exhibits a antimicrobial activity. was isolated from a pure culture of P. denitrificans Z143-1 (Sertan-de Guzman et al., 2007) and the production of additional bioactive compounds could be shown in several other studies (Hentschel et al.. 2001: Muscholl-Silberhorn et al., 2008; Kennedy et al., 2009; Santos et al., 2010).

Despite the fact that members of the genus Pseudovibrio seem to be ubiquitous and important associates of marine invertebrates and are also found free-living, very little is known about the physiology and interactions with the host. In this study, we analyze the genomes of two Pseudovibrio strains. Pseudovibrio sp. FO-BEG1 has

isolated been from an enrichment culture of а Beggiatoa strain, a filamentous, sulfide oxidizing bacterium (Brock and Schulz- Vogt, 2011; Chapters 2 and 3). Initially, this Beggiatoa strain was sampled from a coral suffering from the black band disease off the coast of Florida, which indicates that the strain Pseudovibrio FOcould BEG1 have been associated with the coral at the time of sampling - either in a commensalistic/mutualistic or pathogenic relationship - and is now available as an axenic culture in our lab. Intriguingly, strain FO-BEG1 is also maintained in a co-culture with a Beggiatoa sp., which seems to be unable without to grow Pseudovibrio and is therefore dependent on strain FO-BEG1. The second strain, Pseudovibrio sp. JE062, has been isolated in Florida from the sponge Mycale laxissima in the year 2006 and was described as a sponge symbiont by Enticknap et al. (2006). The analysis of these genomes gives us an insight into the physiological and symbiotic potential of both Pseudovibrio strains and reveals fascinating microorganisms that seem to be adapted to free-living and symbiotic life styles.

Materials and Methods Growth

conditions For aerobic growth CM medium modified after Shieh et al. (2004) was used. After autoclaving, the medium was supplemented with K2HPO4 (1.15 mmol L-1), glucose (10 mmol L-1 unless stated otherwise), 1 mL L-1 tungsten/selenium solution (Brysch et al., 1987), 1 mL L-1 trace elements (Widdel and Pfennig, 1984), and 1 mL L-1 of four vitamin solutions prepared according to Aeckersberg et al. (1991).

For measurement of SO42evolution during S2O32oxidation, 10 mmol L-1 Na2S2O3 • 5 H2O and 5 mmol L-1 glucose were added and 2 g L-1 K2SO4 from the original recipe was replaced with 0.75 g L-1 KCl.

To compare growth between a culture with and without Na2S2O3. K2SO4 was not omitted from the medium and glucose and Na2S2O3 • 5 H2O used were in the same concentrations described as above. To investigate the growth with 4-hydroxybenzoic acid and benzoate, both compounds were added in a concentration of 2 mmol L-1, respectively, without any other carbon source. Growth with phosphonoacetate (1 mmol L-1) as phosphorus source was

tested by adding this compound as the only phosphorus source and all vitamins were omitted from the medium. For fermentation and denitrification experiments under anoxic conditions, aged North Sea water was buffered with 50 mmol L-1 TRIS. supplemented with NH4Cl (10 mmol L-1) and the pH adjusted to 8. Preparation of the medium was performed according to Widdel and Bak (1992) in order to prepare the medium anoxically. Cooling was performed under N2 atmosphere, except for experiments in which N2 production was measured, in which Ar was used as the atmosphere instead. After autoclavation, the medium was supplemented with 10 mmol L-1 glucose, mL L-1 1 tungsten/selenium solution, 1 mL L-1 trace elements and 1 mL L-1 of four vitamin solutions prepared as described above. NaNO3 (10 mmol L-1) was for added experiments investigating denitrification. To test CO oxidation, CM medium was prepared as described above, containing 400 |imol L-1 glucose and supplied with 500 p.p.m. CO to the bottle headspace. For aerobic growth experiments, 250 mL Erlenmeyer flasks were filled with 100 mL medium. For anaerobic growth, 156 mL serum bottles (Wheaton, Millville,

USA) were filled anoxically with 50 mL medium and closed with butyl rubber stoppers. For all experiments, 0.1% or 0.5% of a preculture grown aerobically in CM medium was used as inoculum. All growth performed experiments were with Pseudovibrio sp. FO-BEG1 in triplicates at 28°C in the dark with shaking at 110 rpm.

Chemical analyses

Bacterial growth was monitored as the optical density (OD600 nm) using an Eppendorf BioPhotometer (Eppendorf AG, Hamburg, Germany). SO42- was measured with a Metrohm 761 Compact IC with conductivity detector (Metrohm AG, Herisau, Switzerland) equipped with a Metrosep A Supp 5-100 column with a carbonate eluent (3.2)mmol L-1 Na2CO3/1 mmol L-1 NaHCO3 in deionised water) at a flow rate of 0.7 mL min-1. Tetrathionate was measured according to Kamyshny (2009). Glucose and organic acids were determined using a HPLC system (Sykam GmbH) equipped with an anion neutral pre-column (4x20 mm; Sykam GmbH) and an Aminex HPX-87H separation column (300x7.8 mm; Biorad, Munich, Germany) at а temperature of 60 °C. The eluent consisted of 5 mM H2SO4 in

HPLC-grade water with a flow 0.6 mL rate of min-1. Ouantification of glucose. succinate. lactate. formate. acetate, propionate and ethanol was performed with the 7515A RI detector (ERC, Riemerling, Germany); pyruvate was measured with the Sapphire UV-Vis detector at 210 nm (Ecom, Praha, Czech Republic). NO3" was quantified with a HPLC system (Sykam GmbH, Eresing, Germany) containing an anion neutral pre-column (4x20 mm; Sykam GmbH) and an IBJ A3 anion separation column (4x60 mm; Sykam GmbH) with a column temperature of 50 °C. The eluent consisted of 25 mmol L-1 NaCl and 45% ethanol in deionised water with a flow rate of 1 mL min-1. Detection of NO3- was conducted with Linear Uvis 200 (Thermo Fischer GmbH. Scientific Dreieich, Germany) at 220 nm. N2 was measured described as by al. (2011). Zedelius et CO determination was conducted with Shimadzu GC-8A а (Shimadzu, Duisburg, Germany) chromatograph with gas а Molecular Sieve 5A column (80 to 100; 0.125 in. by 2 m; Restek, Bellefonte, USA) at a flow of 20 mL of synthetic air per minute at 40°C and an RGD2 reduction gas detector (Trace Analytical, Menlo Park, USA).

DNA extraction and sequencing

DNA was extracted from strain FO-BEG1 using the Fast DNA Soil SPIN Kit for (MP Biomedicals LLC. Illkirch. France). according to manufacturers' instructions. 454 sequencing was conducted by LGC Genomics GmbH with a 454 GS FLX System. The Newbler 2.0.00.22 software was used for sequence assembly and assessment. Overall. quality 522919 sequenced reads with an average length of 336.30 bp lead to a 29-fold sequence coverage. In order to close the gaps, a fosmid library with a 1.5-fold physical coverage was created and used for direct sequencing of the fosmid clones. For the residual 96 specific gaps, primers were designed and used for combinatorial PCR on DNA level, the products of which were sequenced via the Sanger method.

Gene prediction, annotation and data mining

Gene prediction was carried out by using the software Glimmer3 (Delcher et al., 2007). Ribosomal RNA genes were detected by the RNAmmer 1.2 using software (Lagesen et al., 2007) and transfer RNAs by tRNAscan-SE (Lowe and Eddy, 1997). Annotation was

performed by using the GenDB, version 2.2 system (Meyer et al., 2003), supplemented by the tool JCoast, version 1.6 (Richter et al., 2008). For each predicted open reading frame (ORF) observations have been collected from similarity searches against sequence databases NCBI- nr. Swiss-Prot. KEGG and genomesDB (Richter et al., 2008) and for protein family databases from Pfam (Bateman al., 2004) and InterPro et (Mulder et al., 2005).

SignalP has been used for signal peptide predictions (Bendtsen et al., 2004) and TMHMM for transmembrane helix- analysis (Krogh et al., 2001). Predicted protein coding sequences were automatically annotated by the in-house software MicHanThi (Quast, 2006). The MicHanThi software predicts gene functions based on similarity searches using the NCBI-nr (including InterPro Swiss-Prot) and database. The annotation of proteins highlighted within the scope of this study was subject of manual inspection. For all observations regarding putative protein functions, an e-value cutoff of 10-4 was considered.

Comparison of the shared gene

content by reciprocal best matches (RBMs) and functional Kyoto classification with encyclopedia of genes and genomes (KEGG) Determination of the shared gene content has been performed by a BLAST all versus all search between FO-BEG1 and JE062. Reciprocal best matches were counted by a BLAST result with an E value <1e-5 each and a subject coverage of over 65%. metabolic For pathway identification. genes were searched for similarity against the KEGG database. A match was counted if the similarity search resulted in an expectation E value below 1e-5. A11 occurring KO (KEGG Orthology) numbers were mapped against KEGG pathway functional hierarchies and statistical analyzed. Functional classification with cluster of orthologous groups (COG) and calculation of the nucleotide Average identity

(ANI) All predicted ORFs were also searched for similarity against the COG database (Tatusov et al., 2003). A match was counted if the similarity search resulted in an E value below 1e-5. ANI between the whole-genome sequences of strain FO-BEG1 and the draft genome sequences of strain JE062 was determined

by using the in silico DNA-DNA hybridization method of the JSpecies (Richter and Rosselló-Móra, 2009) software with default parameters.

Creation of circular genome maps and prediction of ABC and TRAP type transporters Comparative circular genome maps of the RBMs shared between JE062 and FO-BEG1 have been drawn by using JCoast's plugin for CGView (Stothard and Wishart, 2005). Circular GC- plot and GC-skew representation has been drawn by using DNAPlotter (Carver et al., 2009). As initial step for the identification of the ABC transporters, genes containing the Pfam domain ABC_tran (PF00005) were detected in the genome of strain FO-BEG1. For identification of the the permease and the periplasmic binding protein, the close proximity of genes containing ABC_tran domain the was searched. Only ABC systems with at least one ABC tran domain, one permease and one periplasmic binding protein were regarded as functioning ABC transporters and substrate specificity was predicted from the annotations of the subunits. In several cases, one subunit (e.g. the permease) was missing in close proximity of genes with

the ABC_tran domain. In this case, a single permease gene located on any place in the genome with the same substrate specificity prediction but not belonging to any complete ABC system, was used to complement the transporter system. TRAP transporters were regarded as complete when the subunits DctM, DctQ and DctP were present in close proximity. When two subunits were identified in close proximity and the third was missing, the single subunit located on any place in the genome not belonging to any complete TRAP system was used to complement the transporter system. In the case of fusion of the DctQ and M subunits in one gene, only the DctP subunit was required to complete the transporter. Accession numbers The genome shotgun project of strain FO-BEG1 has been deposited at DDBJ/EMBL/GenBank under the accession number CP003147 for chromosome the and CP003148 for the plasmid. The draft genome sequence of strain JE062 has the DDBJ/EMBL/GenBank accession number ABXL00000000. Results and Discussion General genome characteristics The genome size of strain FO-

BEG1 is 5.9 Mbp, including a large plasmid of 0.4 Mbp (Figure S.1). The circular chromosome of 5.5 Mbp contains a large stretch of repeats at position 2,707,040. This area of unknown size could not be bridged with a sequencing direct approach despite the presence of this area on a fosmid, indicating strong secondary structures, and has been masked with the ambiguous nucleotide code 'N'. The G+C content is 52.5 mol% and is consistent with the known values of the described Pseudovibrio isolates (Shieh et al., 2004; Fukunaga et al., 2006; Hosoya and Yokota, 2007). Altogether, we found 5,478 ORFs, 398 of which were located on the plasmid, which correspond to about 87% of encoding DNA. Six complete rRNA operons and 69 tRNA encoding regions were indicating annotated. the capability of a quick response to changing conditions and fast when growth nutrients are available. The genome of strain JE062 has not been closed, but there are 19 contigs available with an overall size of 5.7 Mbp, 5,225 ORFs and 52.4 mol% GC which is content. almost identical to the genome of strain FO-BEG1 (Figure S.1 A and B). It contains 72 tRNA genes and seven complete rRNA operons. Unfortunately, the repeat-rich

area that could not be sequenced in the genome of strain FO-BEG1 shows an ambiguous sequence in strain JE062 as well, and could therefore not be used to close the gap in FO-BEG1. Figure S.1. Comparative circular map of Pseudovibrio sp. FO-BEG1 chromosome (A) and plasmid (B). Most outer lane represents the reciprocal best match (RBM)-shared gene content between FO-BEG1 and JE062. Lane two and three represent all predicted open reading frames (ORFs) on the lagging (red) and leading (green) strands. The two inner lanes display the GC-plot and the GCskew. The red arrow indicates the area of unknown size that could not be closed during sequencing. The bar chart (C) express the amino acid percentage identity of each RBM shared gene-content between FO-BEG1 and JE062. The blue bar is representing the FO-BEG1 chromosome and orange the corresponding plasmid.

Even though the genome of JE062 is not completely closed we assume that it also contains a plasmid with similar content, since most of the genes identified on the plasmid of FO-BEG1 were allocated in the genome of JE062 (Figure S.1 B). Table S.1 shows an overview of

the genome characteristics of both strains as well as the assignment of the genes to COGs. The shared gene content between FO-BEG1 and the draft genome of JE062 comprises 84.4% (4,287 ORFs, Figure S.1 C). An ANI analysis conducted between strains FO-BEG1 and JE062 revealed a 94.5% ANIb (87% genome alignment) and 95.4% ANIm (86% genome alignment) value. The values are in the range of the proposed species definition boundary (Richter Rosselló-Móra, and 2009) indicating a species level degree of similarity. Table S.1. General

Table S.1. General genome features of Pseudovibrio sp. FO-BEG1 and JE062, including categorization of the genes into cluster of orthologous group (COG) categories.

[J] Translation, ribosomal structure and biogenesis 196
190
[K] Transcription 387 367

[L] Replication, recombination and repair 135 125 [D] Cell cycle control, cell division, chromosome partitioning 21 20 [T] Signal transduction mechanism 138 140 [M]Cell wall/membrane/envelope biogenesis 190 176 [N] Cell motility 153 149 Posttranslational [0]

modification, protein turnover, chaperones 135 127 [C] Energy production and conversion 245 245 [G] Carbohydrate transport and metabolism 323 311 [E] Amino acid transport and metabolism 507 492 [F] Nucleotide transport and metabolism 99 92 [H] Coenzyme transport and metabolism 185 181 [I] Lipid transport and metabolism 148 142 [P] Inorganic ion transport and metabolism 291 287 [0] Secondary metabolites biosynthesis, transport and catabolism 210 204 [R] General function prediction only 598 576 [S] Function unknown 281 272 Physiology In both genomes we found a number of genes that indicate high metabolic variety of

Pseudovibrio FO-BEG1 and JE062. Degradation of carbohydrates is most likely performed via the Entner-Doudoroff pathway, which is present in both genomes, due to absence of the phosphofructokinase (PFK), a key enzyme of the glycolysis (Emden-Meyerhoff-Parnas), which is a regularly encountered phenomenon within marine a-Proteobacteria (Furch et al..

al., 2009; Tang et 2009; Williams et al., 2009). Besides the PFK, all other enzymes involved in glycolysis can be identified in both genomes, including fructose-1,6bisphosphatase I, the key enzyme for glyconeogenesis, indicating that the Emden-Meyerhoff-Parnas pathway can be used for anabolic purposes DDBJ/EMBL/GenBank (see accession numbers CP003147. CP003148 and ABXL0000000). Genes encoding all enzymes of the citric acid cycle and pentose phosphate pathway are present. Additionally, both strains have the genetic potential to degrade aromatic compounds via the Pketoadipate pathway, which we demonstrated by growing Pseudovibrio sp. FO-BEG1 with 4-hydroxybenzoate as the only carbon and energy source under aerobic conditions (Figure S 2.1 A). Benzoate, however, was not degraded, indicating that either the uptake of benzoate is detained or the hydroxylation of aromatic ring structure the performed cannot be bv Pseudovibrio FO-BEG1. Under anoxic conditions without FO-BEG1 nitrate. strain metabolized glucose in mixed acid type fermentation, as suggested by the present genes in both strains (see

DDBJ/EMBL/GenBank accession numbers CP003147. CP003148 and ABXL0000000), resulting in acidification of the medium and formation of mainly formate, lactate, acetate, and ethanol. Ethanol production during fermentation has not been described for any Pseudovibrio strain yet. Additionally, pyruvate, propionate, and succinate have been formed, but to a lesser extent (Figure S 2.2 A). Production of trace amounts of fumarate was detected, but could not be quantified. As expected, we found the complete set of genes essential for denitrification. including а membrane-bound (nar) and a periplasmic nitrate reductase (nap). In agreement, we observed complete a denitrification to N2 in laboratory experiments with strain FO-BEG1 (see DDBJ/EMBL/GenBank accession numbers CP003147 and CP003148 and Figure S 2.2 C). For the type strain P. denitrificans. simultaneous denitrification and fermentation was described by Shieh et al. (2004) and could be confirmed in our experiments for strain FO-BEG1 with acetate, formate, lactate, and ethanol as the main fermentation products (Figure S 2.2 B). No genes for assimilatory

reduction nitrate could be identified in the genome. A set of sox genes suggests that both reduced bacteria can use inorganic sulfur compounds as a source of energy to complement heterotrophy. We could show experimentally that the addition of thiosulfate to the medium enhances the aerobic growth of the Pseudovibrio sp. FO-BEG1 culture and sulfate is produced incubation over the period (Figure S 2.1 B and C). No tetrathionate could be measured as an intermediate (results not shown). Therefore, we propose thiosulfate is oxidized that completely to sulfate without any intermediates, as it is known for the typical Sox pathway in a-Proteobacteria (for review, see Ghosh and Dam, 2009).

We identified genes encoding a small (cutS), medium (cutM) and large (cutL) subunit of the aerobic form II carbon monoxide dehydrogenase (CODH) with the accessory gene coxG in the operon (see DDBJ/EMBL/GenBank accession numbers CP003147 and CP003148), indicating the capability of CO oxidation. However, uptake of CO could not be demonstrated under tested conditions (results not shown). Interestingly, our results confirm the hypothesis from a recent

publication testing CO oxidation in bacteria containing type II CODH genes (Cunliffe, 2011), in which none of the isolates containing only the type II variant was capable of CO oxidation. Only bacteria containing the form I CODH have been shown to effectively oxidize CO, thereby questioning whether form II CODH is involved in the process of carbon monoxide oxidation, or if it has another primary function not known until now, as suggested by King and Weber (2007).

In both Pseudovibrio strains, we found genes for phosphonate import and degradation, which allows the bacteria to cleave the relatively stable C-P bonds of phosphonates (see DDBJ/EMBL/GenBank accession numbers CP003147, and CP003148 ABXL0000000). Thereby, they can metabolize a less accessible phosphorous pool in times of phosphate limitation. We could demonstrate growth of Pseudovibrio sp. FO-BEG1 with phosphonoacetate as the only source of phosphorous (Figure S 2.3 A). Additionally, we could show adaptation of Pseudovibrio strain FO-BEG1 to oligotrophic conditions by culturing it with as little as 15 |imol C L-1 (0.18 mg C L-1) dissolved organic carbon

in the medium (Chapter 4), which shows that Pseudovibrio FO-BEG1 is capable of growth under extreme nutrient depletion. The high metabolic variety of Pseudovibrio sp. FO-BEG1 and JE062 is also reflected in the analysis of encoded primary transporters.

In the genome of strain FO-BEG1 we could identify 31 ATP-independent tripartite periplasmic (TRAP) type transporters (see DDBJ/EMBL/GenBank accession numbers CP003147 and CP003148) that are required for import of dicarboxylic acids like malate. succinate and fumarate, one of the highest TRAP numbers of type reported transporters in а genome of a marine prokaryote so far (Wagner-Dobler et al., 2010). In strain JE062 we identified 27 TRAP transporters. Citric acid cycle intermediates therefore to seem be an important source of carbon and energy for the investigated Pseudovibrio strains. In addition. we reconstructed over 80 ATPbinding (ABC) cassette transporter systems with predicted substrate specificity from the genomic data of the strain FO-BEG1, including the plasmid, and over 70 ABC transporter systems for JE062

DDBJ/EMBL/GenBank (see accession numbers CP003147. CP003148 and ABXL0000000). Sugars, oligopeptides and amino acids are the main substrates that are imported via the ABC systems. A large number of transporters for oligopeptides and amino acids in combination with over 85 genes encoding peptidases and proteases (over 75 genes in strain JE062, see DDBJ/EMBL/GenBank accession number ABXL0000000) could help hydrolyze Pseudovibrio to nutrients complex particulate into oligopeptides and amino acids, which could serve as nutrition for both, the prokaryote and the host, as has been suggested by Siegl et al. (2011). Also iron seems to be an important trace element, for which identified we eight transporters including three siderophores three and transporters for hemin (see DDBJ/EMBL/GenBank accession numbers CP003147. CP003148 and ABXL0000000). Table S.2. Identified ATPbinding cassette (ABC) and ATP-independent tripartite periplasmic (TRAP) transporters in the genomes of both Pseudovibrio strains and their

putative functions.

Vitamin synthesis Growth of pro- and eukaryotes depends highly on their requirements for cofactors that the organism can or cannot synthesize on its own. Vitamins are important for many different enzymatic processes and the synthesis of some vitamins is mainly accomplished by bacteria, making the prokaryotes necessary part of the a eukaryotic diet or an important symbiotic partner in relationships. The genomes of Pseudovibrio sp. FO-BEG1 as well as JE062 contain genes encoding key enzymes of the biosynthesis pathways of biotin (H), thiamin (B1), pyridoxin cobalamin (B6). (B12). riboflavin (B2), folic acid (B9) lipoic acid and (see DDBJ/EMBL/GenBank accession numbers CP003147, CP003148 and ABXL0000000). Independence of an external vitamin supply was confirmed during aerobic growth in the defined CM medium without the addition of any vitamins, which implies de novo synthesis of all required growth factors by strain FO-BEG1 under tested conditions (Figure S 2.3 B). Pseudovibrio therefore spp. would be beneficial companions for other prokaryotes or marine invertebrates, since the

dependency on an external supply of those vitamins would be relieved.

Bioactive compounds

Symbiotic relationships between bacteria and marine invertebrates. especially sponges, are of special interest, because bacteria associated with sponges often produce novel bioactive compounds (Piel et al., 2004; Taylor et al., 2007; Fisch et al., 2009). In the chromosome of Pseudovibrio FO-BEG1 we identified a genomic island of more than 50 kb containing among others a gene cluster of 20 genes predicted to be involved in secondary metabolite production (see DDBJ/EMBL/GenBank accession number CP003147). The cluster exhibits high sequence similarity to an architecturally almost identical hybrid nonribosomal peptide synthetase-polyketide synthase (NRPS-PKS) system previously reported from many pathogenic and commensal Escherichia coli strains (Figure S.2) (Nougayrède et al., 2006). The E. coli metabolite. termed colibactin, remains structurally uncharacterized. However. transposon mutagenesis of the gene cluster suggested that

colibactin is a pathogenicity

determinant that induces DNA breaks double strand in eukaryotic host cells, eventually resulting in cell death. The only significant difference between the gene clusters in Pseudovibrio FO-BEG1 and E. coli is an additional set of genes in the encoding putative former. transporters and the presence of a different phosphopantetheinyl transferase gene variant likely involved in generating holoproteins from apo forms of PKSs and NRPSs (Lambalot et al., 1996). In addition, two E. coli genes are fused in the Pseudovibrio cluster. Despite these differences. the architecture strongly suggests that the product of the FO-BEG1 cluster is colibactin, providing new opportunities to unveil the identity of this elusive and biomedically relevant compound. Interestingly, we find this more than 50 kb NRPS/PKS fragment only in Pseudovibrio sp. FO-BEG1 but not in the genome of strain JE062, with flanking regions downstream and upstream of the inserted fragment highly conserved in synteny in strain JE062 (data not shown), indicating that it has been acquired via horizontal gene transfer. Additionally, the plasmid of strain FO-BEG1 contained an ORF encoding a type III PKS of a size of 7.4 kb,

which could also be detected in JE062 strain (see DDBJ/EMBL/GenBank accession number CP003148). S.2. Nonribosomal Figure peptide synthetase-polyketide synthase (NRPS-PKS) system in Pseudovibrio sp. FO- BEG1 and Escherichia coli strain IHE3034. White arrows represent the genes present in Enterobacteriaceae and strain FO-BEG1: black arrows represent the open reading frames (ORFs) present only in either Enterobacteriaceae or FO-BEG1 but presumably involved in the production of colibactin; the gray arrow shows a gene presumably not involved in the synthesis of colibactin. The symbol at ORF PSE 3331 represents a gene fusion of E. coli genes clbG and clbH in FO-BEG1; the symbol at PSE_3324-3321 represents gene insertion or deletion in strain FO-BEG1 or E. coli IHE3034, respectively.

DNA exchange and horizontal gene transfer

The of genomes both Pseudovibrio strains show a high metabolic variety. It is reasonable to assume that various genes were acquired via horizontal gene transfer from microorganisms is other as indicated e.g. by the presence of a 50 kb large NPRS-PKS island that can be found only in

Pseudovibrio sp. FO-BEG1 but not in strain JE062, although both genomes are in general highly similar. In the genome of strain FO-BEG1 we identified a set of genes coding for a complete gene transfer agent (GTA) (in strain JE062 several were missing. genes see DDBJ/EMBL/GenBank accession numbers CP003147. CP003148 and ABXL0000000), a unit best described as a virus. It harbors small parts of the host DNA and capable of injecting it into appropriate cells, without having negative effects on the host cell (for reviews see Lang and Beatty, 2001; Lang and Beatty, 2007). By this process, Pseudovibrio could have taken up and dispersed DNA carried in virus-like particles. thereby gathering genes and establishing a diverse physiology for a symbiotic and a free-living lifestyle. Additionally, we found 14 integrase and 21 transposase elements in the genome of Pseudovibrio sp. FO-BEG1 (see DDBJ/EMBL/GenBank accession numbers CP003147 and CP003148), 9 of which are located adjacent to the hybrid NRPS-PKS gene cluster, which verifies acquisition of this genomic island via horizontal gene transfer.

Quorum sensing

We could identify 15 genes in strain FO-BEG1 and 14 in strain JE062 containing the LuxR domain, which represents the transcriptional regulator of the acetylated homoserine lactone (AHL) type, allowing the bacterium to detect AHL quorum sensing molecules and to initiate a response (see DDBJ/EMBL/GenBank accession numbers CP003147. CP003148 and ABXL0000000). Intriguingly, we could not find any luxI genes, which code for AHL quorum sensing molecules. This observation leads us to the hypothesis both that Pseudovibrio strains do not communicate via AHL within their own species, but seem to use the LuxR as receptors to react to quorum sensing molecules produced by other species and initiate a respective answer. Such a scenario has been described before by Case et al. (2008)and was called 'eavesdropping'. The response reaction could include the production of bioactive compounds to repel competing prokaryotes or to protect the host from pathogens or parasites. Alternatively, such LuxR-family participate 'solos' could in interkingdom signaling, as

suggested by Subramoni and Venturi (2009), thereby facilitating prokaryote-host interactions of Pseudovibrio strains with marine invertebrates.

Growth with Beggiatoa sp. 35Flor

Pseudovibrio sp. FO-BEG1 is the single accompanying organism of the Beggiatoa strain 35Flor, which is growing in a chemolithoautotrophic sulfideoxygen-gradient medium (Brock and Schulz-Vogt, 2011; Chapters 2 and 3). All attempts to grow Beggiatoa without Pseudovibrio failed and so far we could not identify the factors required by Beggiatoa strain for the autonomous growth. It is known, however, that Beggiatoa spp. do not possess catalases (Larkin and Strohl, 1983) and therefore are susceptible to reactive oxygen originating molecules from respiration. Addition of catalase to the medium is known to increase the viability of Beggiatoa sp. (Burton and 1964). We Morita, hence hypothesize that Beggiatoa sp. 35Flor depends on the radical protection system exhibited by Pseudovibrio sp. FO-BEG1 including genes coding for over 20 superoxide dismutases, catalases and peroxidases (see DDBJ/EMBL/GenBank

accession numbers CP003147 and CP003148). The role of heterotrophic bacteria as scavenger of reactive oxygen species has also been described by Morris et al. (2008), which could establish robust growth of cyanobacteria after addition of 'helper' heterotrophs.

Secretion Systems

In the genomes of FO-BEG1 and JE062 we could identify two loci that encode type VI secretion systems (T6SS) as well as one type III secretion system (T3SS) including effector molecules, which indicates the capability of specific interactions with eukaryotes and the possibility of influencing their cell machinery. The T6SS has been described as a major secretion system in the context of pathogenicity as a virulence factor in morbific bacteria (Mougous et al., 2006; Pukatzki et al., 2006) and a core of 13 highly conserved and essential subunits has been identified for this secretion system 129 (Boyer et al., 2009). In both genomes of the Pseudovibrio

genomes of the Pseudovibrio strains, we found two gene clusters consisting of 12 (cluster I) and 20 (cluster II) genes that encode T6SSs. Cluster II contains the complete set of core subunits and therefore we assume that cluster II could, if

expressed, produce a complete and functional type VI secretion system. In cluster I, two core genes are missing in the operon, hcpI and vgrG, which are main components of the injection apparatus with possible effector functions (Pukatzki et al., 2009; Bonemann et al., 2010). However, homologues of hcpI and vgrG could be identified in additional copies at other locations in the genomes of FO-JE062 BEG1 and (see DDBJ/EMBL/GenBank accession numbers CP003147. CP003148 and ABXL00000000), which is a phenomenon regularly found in genomes containing T6SS (Pukatzki et al., 2009). The possible role for type VI secretion systems in bacteria has not been completely elucidated so far, but several functions have been attributed to it already. Mainly, T6SS is described as a virulence factor of pathogenic bacteria delivering effector proteins into host cells (Filloux et al., 2008). However, further studies reveal the involvement of T6SS biofilm in formation (Aschtgen et al., 2008), quorum sensing (Weber et al., 2009), interbacterial interactions (Hood et al., 2010) and antipathogenesis (Chow and Mazmanian, 2010; Jani and Cotter, 2010). In conclusion, it

can be assumed that the T6SS of both strains are functional since the genomes contain the main structural components of the type VI secretion system.

In addition to the T6SS, we identified a type III secretion system in the genomes of both Pseudovibrio strains, which is located in a genomic region encompassing around 35 ORFs with various highly conserved proteins known from T₃S (Cornelis and Van systems Gijsegem, 2000) (Figure S.3 and DDBJ/EMBL/GenBank see accession numbers CP003147. CP003148 and ABXL0000000). Besides the secretion also apparatus we identified encoding genes homologues of three types of effector molecules in the genome of strain FO-BEG1 and two effector molecule types in strain JE062. Those effectors might be directly involved in the establishment of symbiosis between Pseudovibrio and its host. YpkA, IpgD (found in both genomes) and YopJ (only in strain FO-BEG1) are effector molecules that affect the cytoskeleton or the innate immune response of the host, respectively. YpkA is а serine/threonine kinase, which has negative effects on

cytoskeletal dynamics due to its interaction with actin, thereby contributing to the resistance to phagocytosis (Cornelis, 2002). YpkA is present in three copies in both genomes. In Porifera, specialized amoeboid cells, the archaeocytes, resemble macrophages and eliminate nonself material via phagocytosis (Muller and Muller, 2003). Pseudovibrio, expressing and secreting the YpkA effector, could interfere with this process, preventing archaeocytes from digesting Pseudovibrio cells. A similar effect could be induced by a homologue of IpgD found in both genomes, a virulence factor that is responsible for morphological changes of a host cell by increasing membrane detachment from the cytoskeleton (Niebuhr et al., 2000; Niebuhr et al., 2002).

Figure S.3. Operon coding for type III secretion system (T3SS) subunits and effector proteins. White arrows show annotated homologues of T3SS subunits including the gene name within the black arrows: arrows annotated represent effector homologues; dark gray arrows show annotated genes encoding presumably proteins not involved in T3SS; light gray show hypothetical arrows proteins with unknown function. The locus is indicated above and

below some genes for orientation purposes. In FO-BEG1 we additionally identified a homologue of the exhibiting YopJ effector а serine/threonine acetyltransferase function. By acetylation of serine and threonine residues of mitogenactivated protein (MAP) kinases it prevents phosphorylation of those molecules and therefore inhibits the innate immune of response the organism al., (Mukherjee et 2006). Intriguingly, it has been shown that sponges possess a very efficient innate immune response system, using MAP kinases as the essential component of its response to bacterial endotoxin lipopolysaccharide (LPS) (Bohm et al., 2001: Muller and Muller. 2003). This indicates that homologues of the acetyltransferase YopJ effector in Pseudovibrio could prevent phosphorylation of MAP kinases via acetylation, thereby playing a role in the inactivation of the immune answer of the host organism, allowing Pseudovibrio phagocytosis, to avoid as described by Bartsev et al. (2004) for a Rhizobium strain, and to remain in the host for establishment of a symbiosis. This hypothesis is further supported by the fact that a homologue of YopJ (NopJ) was

shown to be an effector in symbiotic rhizobia (Deakin and Broughton, 2009) and Lackner et al. (2011) demonstrated that T3SS is involved in maintenance of a symbiosis between bacteria and fungi by enhancement of intracellular survival of the prokaryote within the host.

Adhesion

In both genomes we found homologues of genes coding for proteins responsible for adhesion to surfaces or other cells. These proteins, belonging to the group of amyloids, are extracellular proteinaceous components and are known in Enterobacteriaceae as curli fibers. They are involved in adhesion to surfaces, cell aggregation, biofilm formation and mediate cell-cell adhesion and invasion of host cells (Barnhart and Chapman, 2006).

The production of curli fibers in enteric bacteria is dependent on at least six proteins encoded by the operons csgAB and csgDEFG (agf in Salmonella) (Hammar et al., 1995), the latter of which is required for assembly, stability and secretion of the amyloids (Hammar et al., 1995). csgAB encodes the structural subunits of the curli fibers, both genes containing

characteristic repeat motifs (Hammar et al., 1996). A gene cluster in the genome of Pseudovibrio FO-BEG1 sp. resembles the curli formation enteric bacteria operon in (Figure S.4).

Figure S.4. Comparison of genes amyloids encoding in Enterobacteriaceae and the operon in Pseudovibrio sp. FO-BEG1. White arrows represent homologues of genes in enteric bacteria; gray arrows show genes present in Enterobacteriaceae only; black arrows show genes containing curli repeats, typical motifs of the amyloid structural subunits. The number within the black arrows shows the amount of curli repeats in the according gene.

Homologues of csgF and csgG, required for stabilization and secretion of the amyloids are found in direct proximity to three containing genes curlin associated repeats as typical structural components of the curli fibers. We hypothesize that the identified operon might code for amyloid structures comparable to curli fibers due to the existence of characteristic curlin repeat motifs and genes involved in the assembly and secretion of such structures, therefore allowing Pseudovibrio

to attach to other cells or form biofilms or aggregates. Additionally, we identified 35 genes in strain FO-BEG1 and 37 in JE062 containing domains mediating prokaryote-eukaryote supporting interactions. the proposed role of Pseudovibrio as a symbiont with possibilities to attach and interact with the host organism (see DDBJ/EMBL/GenBank accession numbers CP003147. CP003148 and ABXL0000000).

Conclusions

In this study, we analyzed highly similar genomes of two Pseudovibrio strains that originate from the coast of Florida, the Pseudovibrio sp. FO-BEG1 sampled from a coral and maintained over 10 years in co-culture with Beggiatoa sp. and Pseudovibrio sp. JE062 sampled from a sponge in the same region (Enticknap et al., 2006). The physiology of both strains is extremely versatile and the metabolic traits found in the genome could be partially verified in experiments with strain FO-BEG1. Here. we describe for the first time a Pseudovibrio strain that uses aromatic compounds as a carbon and electron source, oxidizes thiosulfate under aerobic

conditions and uses phosphonates as a phosphorous source. Notably, strain FO-BEG1 grows under extreme limitation. nutrient which emphasizes its adaptation to life in the open ocean. The metabolic variety is confirmed by the numerous transporter systems that are encoded in the genome. Compared with other marine bacteria, like the prominent Roseobacter clade, which is known to be ubiquitous, multitudinous and physiologically versatile (Newton et al., 2010), Pseudovibrio seems to be of similarly capable a generalistic life style, exploiting quite a number of sources for energy sources, nutrients and trace elements.

Aside from metabolic variety, the genomic data of both strains also confirm close associations with marine invertebrates and indicate several potential mechanisms for establishing and maintaining a symbiosis. The most striking discovery is the presence of effector homologues secreted by type III secretion systems, which could affect sponges by interacting with their immune response system (YopJ) cytoskeleton (YpkA, or the IpgD) and thereby have a drastic impact on the cell machinery of the host. Another fascinating

discovery is the presence of the hybrid NRPS-PKS system in strain FO-BEG1, which has so far only been described for of members the Enterobacteriaceae family (Putze et al., 2009), producing the bioactive compound colibactin with vet unknown in-vivo functions. but arresting eukaryotic cells in the G2 phase, eventually leading to cell death (Nougayrède et al., 2006). The presence of a gene cluster coding for a cytopathic compound in strain FO-BEG1 emphasizes the impact that Pseudovibrio cells might have marine on invertebrates. Intriguingly, strain FO-BEG1 seems to be a required partner in the Beggiatoa coculture, indicating its important symbiotic role not only for marine invertebrates but also for prokaryotes. It is possible that Pseudovibrio has positive effects for certain bacteria under in-vivo conditions, e.g. by supplying vitamins detoxifying or intermediates metabolic or radical oxygen species.

Figure S.5. Schematic overview of the possible life styles and the physiologic capabilities derived from genetic information of both Pseudovibrio genomes. On the left hand side, physiologic abilities are depicted that could be used in free-living, oxic and

anoxic conditions. On the right hand side. attached the or associated life style is illustrated. The host organism for the associated life style can be represented by a sponge, coral or tunicate. Biofilm formation. aggregation and attachment to host cells could be performed via e. g. amyloid-like structures. The proposed secretion systems could be involved in prokaryoteeukaryote interactions. influencing the cell machinery of Additionally, host. the Pseudovibrio could supply the host with cofactors like vitamins synthesize secondary or metabolites defense a as mechanism against other prokaryotes or the host.

The frequent identification and isolation of Pseudovibrio strains in many studies over the last years implies an important but rather unexplored role for this genus marine in habitats. According to the genomic and physiological data on Pseudovibrio spp., we propose a free- living and attached or associated life style model for this genus (Figure S.5). As a denitrifying heterotroph, Pseudovibrio has an obvious influence on the carbon and nitrogen cycles. Its ecological impact can now be extended to the sulfur and phosphorus cycles

due to its ability to metabolize thiosulfate and phosphonates. Additionally, we hypothesize that, due to the predictions based on the genomic data, similar to E. coli in humans, Pseudovibrio is a commensalistic or even beneficial symbiont of marine invertebrates with a potential to become pathogenic.

