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5.7.2 Diagnostic observer and residual

generator of general form EHCORCONIM

Our next task is to find out the relationships
between the design parameters of the
diagnostic observer and the ones given by
the general residual generator

(5.106)

whose design parameters are observer
matrix L and post-filter R(p). We study two
cases: s<nands>n.

Firstly s < n:

We only need to demonstrate that for s <n
the diagnostic observer (5.36)- (5.37)
satisfying (5.30)-(5.31), (5.38) can be
equivalently written into form (5.106) . Let
us define

(5.107) (5.108) (5.109)

and extend (5.31) and (5.38) as follows

Note that choosing, for instance, T1 as a
composite of the eigenvectors of A — LaC
and L1 — T1 La guarantees the existence of
(5.108), where La denotes some matrix that
ensures the stability of matrix A — LaC.
Since

.........................

the residual generator
................ can be equivalently written as

.....................

Nhiém vu tiép theo cua ching ta 1a tim mdi
lién hé gitra cac tham sb thiét ké cua khdi
quan sat chan doan va cac tham s thiét ké
ctia khdi phét tin hiéu du téng quat

(5,106)

Cac tham sb thiét ké cua n6 1a ma tran quan
sat L va bo hau loc R (p). Xét hai truong
hop: s <nva s> n.

Trudc hét s <n:

Ching ta chi can chang minh rang trong
truong hop s <n khdi quan sat chan doan
(5.36) - (5.37) thoa man (5.30) - (5.31),
(5.38) cd thé dugc viét dudi dang tuong
duong (5,106).Chung ta hdy dinh nghia

(5,107) (5,108) (5,109)
va mo rong (5.31) va (5.38) nhu sau

Luu Y rang viéc lya chon, chang han T1 Ia
mot phirc hgp cua cac vector riéng cua A -
Lac va L1 - T1 La dam bao su ton tai cua
(5,108), trong d6 La biéu dién ma tran nao
d6 dam bao sy 6n dinh cua ma tran A -
Lac. Boi vi

khéi phat tin hiéu du

c6 thé duoc viét dudi dang




We thus have the following theorem.

Theorem 5.14 Every diagnostic observer
(5.36)-(5.37) of order s < n can be
considered as a composite of a fault
detection filter and post-filter V.

Remark 5.8 Theorem 5.14 implies that the
performance of any diagnostic observer
(5.36)-(5.37) of order s < n can be reached
by an FDF together with an algebraic post-
filter.

Now s > n:

We first demonstrate that for s > n the
diagnostic observer (5.36)-(5.37) satisfying
(5.30)-(5.31), (5.38) can be equivalently
written into form (5.106). To this end, we
introduce following matrices

.............................

................................

Since G is stable, there does exist TO
satisfying  (5.116). Applying (5.115)-
(5.118) to the diagnostic observer

.......................

tuong duong la

Vi thé chling ta c6 dinh ly sau day.

binh ly 5.14 M&i khdi quan st chan doan
(5.36) - (5.37) bac s <n c6 thé duoc xem la
maot hdn hop cua bo loc phat hién 16i va bo
hau loc V.

Nhan xét 5.8 Pinh ly 5.14 phat biéu ring
hiéu suat cua bat ky khdi quan sat chan
doan (5.36) - (5.37) bac s <n nao co thé dat
duoc qua qua trinh  FDF cung véi mot bo
hau loc dai sé.

Bay gio s> n:

Trudc tién ching ta chang té rang trong
truong hop s> n khdi quan sat chan doan
(5.36) - (5.37) théa man (5.30) - (5.31),
(5.38) c6 thé duoc viét dusi dang (5,106).
Pé lam diéu do, chlng ta dua vao cac ma
tran sau

va mé rong (5.31) va (5.38) cho

Boéi vi G 6n dinh, ton tai TO thoéa mén
(5.116). Ap dung (5,115) - (5,118) cho khdi




results

(5.122)

We see that for s > n the diagnostic observer
(5.36)-(5.37) can be equivalently written
into form (5.106), in which the post-filter is
a dynamic system.

Solve equation

................................

Theorem 5.15 Given diagnostic observer
(5.36)-(5.37) of order s > n with G,L,T,V,W
solving the Luenberger equations (5.30)-
(5.31) and (5.38), then it can be equivalently

quan sét chan doan

(5,122)

Chuing ta thay rang khi s> n khdi quan sat
chan doan (5.36) - (5.37) cd thé duogc viét
dudi dang (5,106), trong do b hau loc la
mét hé thong dong.

Giai phuong trinh

DP6i véi TO, TO, T, thé thi ching ta thu
duoc

D6 ciing 1a phan chiing minh cho dinh ly
sau day.

Dinh Iy 5.15 V&i khdi quan séat chan doan
(5.36) - (5.37) bacs>nco G, L, T,V, W
théa mén cac phuong trinh Luenberger




written into
(5.127)(5.128)(5.129)(5.130)

We are now going to show that for a given
residual generator of form (5.106) we are
able to find a corresponding diagnostic
observer (5.36)-(5.37). For this purpose, we
denote the state space realization of R(p)
with Dr + Cr(pi — Ar)~1Br. Since

it is reasonable to define
Note that

ensure that residual generator

satisfies Luenberger conditions
(5.31), (5.38).

The discussion on the possible applications
of the interconnections revealed in this
subsection will be continued in the next
subsections.

5.7.3 Applications of the interconnections
and some remarks

In literature, parity relation based residual
generators are often called open- loop
structured, while the observer-based
residual generators closed-loop structured.
This view may cause some confusion, since,
as known in the control theory, closed-loop
and open loop structured systems have
different dynamic behavior. The discussion
carried out above, however, reveals that this
Is not the case for the parity relation and

(5.30)-

(5.30) - (5.31) va (5.38), thé thi ching ta co
thé viét n6 trong duong dudi dang
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observer-based residual generators: They
have the identical dynamics (under the
condition that the eigenvalues are zero), also
regarding to the unknown inputs and faults,
as will be shown later.

A further result achieved by the above study
indicates that the selection of a parity space
vector is equivalent with the selection of the
observer matrix, the feedback matrix (i.e.
feedback of system output y) of an s-step
deadbeat observer. In other words, all
design approaches for the parity relation
based residual generation can be used for
designing observer-based residual
generators, and vice-versa.

What is then the prime difference between
the parity relation based and the observer-
based residual generators? The answer can
be found by taking a look at the
implementation forms of the both types of
residual generators: the implementation of
the parity relation based residual generator
uses a non-recursive form, while the
observer-based residual generator represents
a recursive form.

A similar fact can also be observed by the
observer-based approaches. Under certain
conditions the design parameters of a
residual generator can be equivalently




converted to the ones of another type of
residual  generator, also the same
performance can be reached by different
residual generators.

This observation makes it clear that
designing a residual generator can be
carried out independent of the

implementation form adopted later. We can
use, for instance, parity space approach for
the residual generator design, then
transform the parameters achieved to the
parameters needed for the construction of a
diagnostic observer and finally realize the
diagnostic  observer for the on-line
implementation. The decision for a certain
type of design form and implementation
form should be made on account of

. the requirements on the on-line
implementation,
. which approach can be readily used

to design a residual generator that fulfills
the performance requirements on the FDI
system,

. and of course, in many practical
cases, the available design tools and
designer’s knowledge of design approaches.

Recall that parity space based system design
IS characterized by its simple mathematical
handling. It only deals with matrix- and
vector-valued operations. This fact attracts




attention from industry for the application
of parity space based methods. Moreover,
the one-to-one mapping between the parity
space approach and the observer-based
approach described in Theorems 5.12 and
5.13 allows an observer-based residual
generator construction for a given a parity
vector.

Based on this result, a strategy called parity
space design, observer-based
implementation has been developed, which
makes use of the computational advantage
of parity space approaches for the system
design (selection of a parity vector or
matrix) and then realizes the solution in the
observer form to ensure a numerically stable
and less consuming on-line computation.
This strategy has been for instance
successfully used in the sensor fault
detection in vehicles and highly evaluated
by engineers in industry. It is worth
mentioning that the strategy of parity space
design, observer-based implementation can
also be applied to continuous time systems.

Table 5.1 summarizes some of important
properties of the residual generators
described in this section, which may be
useful for the decision on the selection of
design and implementation forms.

In this table,




. "solution form" implies the required
knowledge and methods for solving the
related design problems. LTI stands for the
needed knowledge of linear system theory,
while algebra means for the solution only
algebraic computation, in most cases
solution of linear equations, is needed.

. "dynamics” is referred to the
dynamics of LTI residual generator (5.24).
OEE + v implies a composite of output
estimation error and an algebraic post-filter,
OEE + R(p) a composite of output
estimation error and a dynamic post-filter.

Table 5.1 Comparison of different residual
generation schemes

5.7.4 Examples

Example 5.8 We now extend the results
achieved in Example 5.6 to the construction
of an observer-based residual generator.
Suppose that (5.97) is a discrete time
system. It follows from Theorem 5.12 and
(5.103) that

builds a residual generator. If we are
Interesting in achieving a residual residual
generator whose dynamics is governed by

....................

then the observer gain matrix L should be
extended to

.............................




Note that in this case the above achieved
results can also be used for continuous time
systems.

In summary, we have some interesting
conclusions:

. given a transfer function, we are able
to design a parity space based residual
generator without any involved computation
and knowledge of state space realization

. the designed residual generator can be
extended to the observer-based one. Once
again, no involved computation is needed
for this purpose

. the observer-based form can be
applied both for discrete and continuous
time systems.

We would like to mention that the above
achieved results can also be extended to
MIMO systems.

Example 5.9 We now apply the above result
to the residual generator design for our
benchmark DC motor DR300 given in
Subsection 3.7.1. It follows from (3.50) that

......................................

.................




Now, we design an observer-based residual
generator of the form

(5.136)

without the knowledge of the state space
representation of the system. To this end,
using Theorem 5.12 and (5.103) with vs
given in (5.135) results in

To ensure a good dynamic behavior, the
eigenvalues of matrix G are set to be

10.—10.—10, which leads to

and further
5.8 Notes and references

The general form and parameterization of
all LTI stable residual generators were first
derived by Ding and Frank [38]. The FDF
scheme was proposed by Beard [11] and
Jones [86]. These works are recognized as
marking the beginning of the model-based
FDI theory and technique. Both FDF and
DO techniques have been developed on the
basis of linear observer theory, to which
O’Reilly’s book [111] gives an excellent
introduction.

Only few references concerned
characterization of DO and parity space
approaches can be found in the literature.
For this reason, an extensive and systematic




study on this topic has been included in this
chapter. The most significant results are

. the necessary and sufficient condition
for solving Luenberger equations

(5.30)-(5.31), (5.38) and its expression in
terms of the solution of parity equation
(5.87)

. the one-to-one mapping between the
parity space and the solutions of the
Luenberger equations

. the minimum order of diagnostic
observers and parity vectors and

. the characterization of the solutions
of the Luenberger equations and the parity
space.

Some of these results are achieved based on
the works by Ding et al. [28] (on DO) and
[44] (on the parity space approach). They

will also be used in the forthcoming
chapters.
The original versions of numerical

approaches proposed by Ge and Fang as
well as Ding at al. have been published in
[61] and [28], respectively.

Accompanied with the establishment of the
framework of the model-based fault
detection approaches, comparison among
different model-based residual generation
schemes has increasingly received attention.
Most of studies have been devoted to the
interconnections between FDF, DO on the
one side and parity space approaches on the
other side, see for instance, the significant




work by Wuenneberg [148]. Only a few of
them have been dedicated to the comparison
between DO and factorization or frequency
approach. A part of the results described in
the last section of this chapter was achieved
by Ding and his co-worker [42].

An interesting application of the comparison
study is the strategy of parity space design,
observer-based implementation, which can
be applied both for discrete and continuous
time systems and allows an easy design of
observer- based residual generators. In
[131], an application of this strategy in
practice has been reported. It is worth
emphasizing that this strategy also enables
an observer-based residual generator design
based on the system transfer function,
instead of the state space representation, as
demonstrated in Example 5.9.

Perfect unknown input decoupling

In this chapter, we address the problems of
generating residual signals which are
decoupled from the disturbances (unknown
inputs). That means the generated residual
signals will only be influenced by the faults.
In this sense, such a residual generator also
acts as a fault indicator. It is often called
unknown input residual generator. Fig.6.1
sketches the objective of this chapter
schematically.




Fig. 6.1 Schematical description of
unknown  input  decoupled  residual
generation

6.1 Problem formulation

Consider system model (3.29) and its

minimal state space realization (3.30)-
(3.31). It is straightforward that applying a
residual generator of the general form (5.24)
to (3.29) yields

Remember that for the state space
realization (3.30)-(3.31), residual generator
(5.24) can be realized as a composition of a
state observer and a post-filter,

which can be rewritten into, by noting
Lemma 3.1,

with an LCF of Cyf (p) — Myl(p)NT (p)
and Cyd(p) M”L (p)Nd(p). It s
Interesting to notice that

...............................

Hence, we assume in our subsequent study,
without loss of generality, that

.............................




For the fault detection purpose, an ideal
residual generation would be a residual
signal that only depends on the faults and is
simultaneously independent of disturbances.
It follows from (6.1) that this is the case for
all possible disturbances and faults if and
only if

Finding a residual generator which satisfies
condition (6.3) is one of the mostly studied
topics in the FDI area and is known as,
among a number of expressions, perfect
unknown input decoupling.

Definition 6.1 Given system (3.29).
Residual generator (5.24) is called perfectly
decoupled from the unknown input d if
condition (6.3) is satisfied. The design of
such a residual generator is called .

In the following of this chapter, we shall
approach PUIDP. Our main tasks consist in

. the study on the solvability of (6.3),

. presentation of a frequency domain
approach to PUIDP

. design of unknown fault
detection filter (UIFDF)

input

. design of unknown input diagnostic
observer (UIDO) and

. design of unknown input parity




relation based residual generator.

6.2 Existence conditions of PUIDP

In this section, we study

. under which conditions (6.3) is
solvable and
. how to check those existence
conditions.

6.2.1 A general existence condition
We begin with a reformulation of (6.3) as

.......................... (6.4)

with A =0 as some transfer matrix.
Since

and R(p) is arbitrarily selectable in  the

following theorem is obvious.
Theorem 6.1 Given system (3.29), then
there exists a residual generator

such that (6.3) holds if and only if
......................... (6.5)

Proof. If (6.5) holds, then there exists a R(p)
such that

R(p)Mu(p)Gyd(p) = 0 and R(p)Mu(p)Gyf
(p) = 0 This proves the sufficiency. Suppose

that (6.5) does not hold, i.e.
rank [Gyf (p) Gyd(p)] = rank (Gyd(p)) .

L il




As a result, for all possible R(p)Mu(p) one
can always find a transfer matrix T(p) such
that

E%()P)jMU(p)Gyf () = R(PIMu(p)Gyd(p)T
p

Thus, R(p)Mu(p)Gyd(p) = 0 would lead to

R(P)IMu(p)Gyf (p) = 0

I.e. (6.3) can never be satisfied. This proves
that condition (6.5) is necessary for (6.3)




4.2  Excitations and sufficiently excited
systems checked 8/1

In this section, we briefly address the
Issues with excitation signals, which are,
as shown above, needed for detecting
multiplicative faults. Let G%. (p) be the
fault transfer matrix of a multiplicative
fault and satisfy

then we can find a K-dimensional
subspace WexCj». so that for all u £
WexCj".

% (p)u(p) = 0.

From the viewpoint of fault detection,
subspace WexCj”. contains all possible
input signals that can be used to excite a
detection procedure.

Definition 4.3 Let G%. (p) be the fault
transfer matrix of multiplicative fault
............................ (4.16)

is called excitation subspace with respect
to

Mathematically, we can express the fact
that detecting an additive fault, say is
independent of exciting signals by
defining

In this way, we generally say that

Definition 4.4 System (4.1)-(4.2) is
sufficiently excited regarding to a fault C,
if

..................... (4.17)

With this definition, we can reformulate
the definition of the fault detectability
more precisely.

Definition 4.5 Given system (4.1)-(4.2). A
fault is said structurally detectable if for u




£ UeXc,E.
.......................... (4.18)

Remark 4.1 In this book, the rank of a
transfer matrix is understood as the so-
called normal rank if no additional
specification is given.

4.3  Structural fault isolability

4.3.1 Concept of structural fault
isolability

For the sake of simplicity, we first study a
simplified form of fault isolability
problem, namely distinguishing the
influences of two faults. An extension to
the isolation of multiple faults will then be
done in a straightforward manner.
Consider system model (4.1)-(4.2) and
suppose that the faults under consideration
are detectable. We say any two faults, ,i —
J, are isolable if the changes in the system
output caused by these two faults are
distinguishable. This fact can also be
equivalently expressed as: any
simultaneous occurrence of these two
faults would lead to a change in the system
output. Mathematically, we give the
following definition.

Definition 4.6 Given system (4.1)-(4.2).
Any two detectable faults, £ — [fi Zj] ,i —
J, are isolable, when for u £ Uexcfi H
UexckE.

......................... (4.19)

It is worth mentioning that detecting a
fault in a disturbed system requires
distinguishing  the fault from the
disturbances. This standard fault detection
problem can also be similarly formulated
as an isolation problem for two faults.

In a general case, we say that a group of
faults are isolable if any simultaneous




occurrence of these faults would lead to a
change in the system output. Define a fault
vector

........................ (4.20)

which includes | structurally detectable
faults to be isolated.

Definition 4.7 Given system (4.1)-(4.2).
The faults in fault vector £ are isolable,
when for all u £ H ~exc,Mi

................... (4.21)

We would like to call reader’s attention on
the similarity between the isolability of
additive faults and the so-called input
observability which is widely used for the
purpose of input reconstruction. Consider
system

It is called input observable, when y(t) = 0
implies f (t) = 0. Except the assumption on
initial condition x (0), the physical
meanings of the isolability of additive
faults and input observability are
equivalent.

With the aid of the concept of fault
transfer matrices, we now derive existence
conditions for the structural fault
isolability.

Theorem 4.2 Given system (4.1)-(4.2),
then any two faults with fault transfer
matrices G%. (p),G" (p),i = |j, are
structurally isolable if and only if

rank [G". (p) G"J (p)] = rank (G™. (p)) +
rank ("G"j (p)*. (4.22)

Proof. It follows from (4.11)-(4.15) that
the changes in the output caused by ~£j
can be respectively written as

...............................

where
Zi(p) = C(dfi) for & = fi or zt(p) = L
(d™u(t)) for & e {9At ,0Bt ,6Ci ,0Di} with




u £ Uexc£i H UexcE.. Since

The theorem is thus proven. O

An extension of the above theorem to a
more general case with a fault vector £ =
[£1 eee ] is straightforward and hence its
proof is omitted.

Corollary 4.1 Given system (4.1)-(4.2),
then £ with fault transfer matrix Gz(P)=

[%(p) ... G*,(0)]
is structurally isolable if and only if

In order to get a deeper insight into the
results given in Theorem 4.2 and
Corollary 4.1, we study some special cases
often met in practice.

Suppose that the faults in fault vector £ —
[*1 mmm ] are additive faults. Then the
following result is evident.

Corollary 4.2 Given system (4.1)-(4.2) and
assume that — 1, mmm ,1 < kf are additive
faults. Then, these | faults are isolable if
and only if

This result reveals that, to isolate |
different faults, we need at least an I-
dimensional subspace in the measurement
space spanned by the fault transfer matrix.
Considering that rank (G%(p)) < min {to,
1} with m as the number of the sensors,
we have the following claim which is very
easy to check and thus useful for the
practical application.

Claim. The additive faults are isolable
only if the number of the faults is not




larger than the number of the sensors.

Denote the minimal state space realization
of G* (p) by

Check  condition (4.24) can be
equivalently expressed in terms of the
matrices of the state space description.

Corollary 4.3 Given system (4.1)-(4.2) and

assume that ")i — 1, kf, are additive
faults. Then these | faults are isolable if
and only if

Proof. The proof becomes evident by
noting that

Recall that for additive faults the fault
isolability introduced in Definition 4.7 is
identical with the concept of input
observability known and intensively
studied in the literature, we would like to
extend our study

. to find out alternative conditions for
checking conditions (4.24) or (4.25)

. to compare them with the results
known in the literature and

. to gain a deeper insight into the
isolability of additive faults, which will be
helpful for some subsequent studies in the
latter chapters.

To simplify our study, we first consider
(p) = C (pi — A)~x . It follows from
Cayley-Hamilton Theorem that

(4.26)

which can be rewritten into

..................................

It is obvious that if

| L







11 Integration of norm based and statistical
methods [IEICHECKEM

The achieved results evidently reveal that,
both in the norm based methods and the

approach presented in this section, the

boundedness of and the covariance of the

residual signal given in (11.8) play an
important role in threshold determination, as
we can see from (11.18). This is a convincing
argument for a system designer to make use
of the degree of the design freedom offered
by the observer to achieve an optimal trade-of
between

(dich tieng viet)

Example 11.1 We continue our study in
Example 10.1, where a fault detection system
is designed for the three tank system
benchmark. Now, in addition to the noises,
off set in the sensors is taken into account and
modelled as unknown inputs by

(dich tieng viet)

It is assumed that is bounded by d = 0.05 .
Our design objective is to determine the
threshold Jth using Algorithm 11.3. For the

11 Tich hop cac phuong phdp dua trén
chuan va thong ké

RO rang, cac két qua thu dugc cho thiy
ring ca trong phuong phap dwa trén
chuan va phuong phap duoc trinh bay
trong phan nay, can cua 5rd va hiép
phuong sai cua tin hiéu du trong (11.8)
dong val tr0 quan trong trong viéc xac
dinh ngudng, ching ta ¢ thé thiy dicu
nay tu (11.18). Pay la mot 1ap luan ¢ sure
thuyét phuc dé nha thiét ké hé thong st
dung mirc do tu do thiét ké cta bd quan

sat dé dat duoc sy dung hoa téi wu giira
(Dich tieng viet)

Vi du 11.1 Ching ta tiép tuc xét Vi du
10.1, trong d6 hé théng phéat hién 16i
duoc thiét ké cho tiéu chuan hé ba bé.
Bay gio, cung véi nhiéu, off set trong céac
cam bién duoc tinh dén va dugc md hinh
hoa dudi dang cac dau vao bat dinh

(Dich tieng viet)




residual generation purpose, we use the same
two Kalman filters designed in Example
10.1, i.e. (@) a Kalman filter driven by the
level sensor of tank 1 (b) a Kalman filter
driven by all three sensors. Under the same
assumptions with o= 0 05, we have

Case (a) with one sensor: Jth = 26. 3349

Case (b) with three sensors: Jth = 68 .0159 .

Fig.11.2 and Fig.11.3 show the simulation

results of the testing statistic and

Fig. 11.2 Testing statistic and the threshold:
one sensor case

Fig. 11.3 Testing statistic and the threshold:
three sensors case

(dich tieng viet)

threshold by an offset fault (5¢cm) in sensor 1
at = 12 sec,with respect to the designed FD
systems

(dich tieng viet)

11.2 Residual evaluation scheme for




stochastically uncertain systems

In Section 8.5, we have studied the residual
generation problems for stochastically
uncertain  systems. The objective of this
section is to address the residual evaluation
problems, as sketched in Fig.11.4.

11.2.1 Problem formulation

As studied in Section 8.5, we consider system
model .

A ,AB ,AC,AD, AE and AF represent model
uncertainties satisfying.

(dich tieng viet)

FDI  in systems with  deterministic
disturbances and stochastic uncertainties.

with known matrices Ai , Bi, Ci ,Di, Ei ,Fi
=1, ...1 , of appropriate dimension. pT (k)
=[pl(k) ... pl(k) ] represents model
uncertainties and is expressed as a stochastic
process with

(dich tieng viet)

where i =1, ... 1, are known. It is further
assumed that p(0) ,p(1)...,are independent and
(0) ,u(k) , d(k) , f(k) are independent of p(K) .

For the purpose of residual generation, an




FDF is used. The dynamics of the above
residual generator is governed by

(dich tieng viet)

The matrices in (11.24), (11.25)are de-
scribed in Section 8.5. We assume that the

system is mean square stable.

In the remainder of this section, the standard
variance of r(k) is denoted by

(dich tieng viet)

It is the objective of our study in this section
that a residual evaluation strategy will be
developed and integrated into a procedure of
designing an observer-based FDI system. This
residual evaluation strategy should take into
account a prior knowledge of the model
uncertainties and combine the statistic testing
and norm based residual evaluation schemes.
Note that the residual signal considered in the
last section is assumed to be a normal
distributed

(dich tieng viet)

Differently, we have no knowledge of the

distribution of the residual signal addressed in




this section.

The problems to be addressed in the next
subsections are

» selection of a residual evaluation function
and

 threshold determination for the given
residual evaluation function and an allowable
false alarm rate o.

(dich tieng viet)

11.2.2 Solution and design algorithms

A simplest way to evaluate the residual signal
Is to compute its size at each time instant and
compare it with a threshold. Considering that
Is a stochastic process whose distribution is
unknown, it is reasonable to set the threshold
equal to

(dich tieng viet)

where B( >1) is some constant used to reduce
the false alarm rate. In (11.28), the first term
represents the bound on the mean value of the
residual signal in the fault-free case, while the
second term, considering the stochastic
character of , is used to express the expected

derivation of from its mean value.




(dich tieng viet)

It is evident that the above decision logic with
threshold (11.28) may result in a high false
alarm rate if the standard variance of IS
large. For this reason, we propose the
following residual evaluation function

(dich tieng viet)

Is the average of the residual signal over the
time interval ( k — N ,k ), which is influenced
by both the additive and multiplicative faults.
The following theo- rem reveals an important
statistical property of evaluation function
(11.31).

(dich tieng viet)

Theorem 11.1 Given system model (11.24)-
(11.25) and suppose that the system is mean
square stable, and with are bounded.
Then,

(dich tieng viet)

11.2 Residual evaluation scheme for




stochastically uncertain systems with.

(dich tieng viet)

and moreover, considering that the size of all
eigenvalues of is smaller than one, we also
have

(dich tieng viet)

where, due to the boundness of Eand E, pis
a constant and independent of N. It results in
finally .

The theorem has thus been proven

Note that

(dich tieng viet)

11.2 Residual evaluation scheme for
stochastically uncertain systems

I.e. J will deliver a good estimate for the mean
value of the residual signal.

Motivated and guided Dby the above
discussion, we propose, corresponding to
evaluation function (11.31), the following
general form for setting the threshold:

(dich tieng viet)

where f is a constant for a given N . In this




way, the problem of determin- ing the
threshold is reduced to find B. Next, we
approach this problem for a given allowable
false alarm rate a . To this end, we first
introduce  the  well-known  Tchebyche
Inequality, which says: for a given random
number x and a constant A>0 satisfying . it
holds

Recall that the false alarm rate is defined by

(dich tieng viet)

From (11.38) it can be seen that a lower

allowable false alarm rate requires a larger 3

To complete our design procedure, it remains
to find A and B as well as C and C which are
needed for the computation of threshold
(11.36) as well as p in (11.32). Using the LMI
technique introduced in Chapter 9, we obtain

the following results.

Pé hoan thanh quy trinh thiét ké cua
chlng ta, chiing ta vin con can phai tim A
va B cling nhu C va C d6 la nhitng dai
luong can thiét dé tinh ngudng (11.36)
cling nhu p trong(11.32). St dung k¥
thuat LMI dugc trinh bay trong chuong 9,

ching ta thu duoc két qua nhu sau.







On the other side, it holds that BiCCCREGNG

As a result,
The theorem is thus proven.

From the FDI viewpoint, the result in
Theorem 12.12 can be interpreted as the fact
that the FD system designed by the trade-off
strategy developed in this paper is less robust
in comparison with the FD system designed
by using the unified solution. On the other
side, as mentioned in the former subsection,
the new trade-off strategy delivers a better
estimation of the size of the possible faults. In
this context, we would like to emphasize that
the decision for a certain optimization
approach should be made based on the design
objective  not on the mathematical
optimization performance index.

12.3.6 An example

In this subsection, an example is given to
illustrate the results achieved in the last two
sections.

Consider the FD problem of a system in the
form of (12.61)-(12.62) with matrices

From Theorem 12.8, we get the optimal gain
matrix L1,V1

The unified solution that solves (12.78),
(12.82) and (12.76) simultaneously is

The optimal performance indexes, as obtained
by solving (12.78), (12.82) and (12.76) are
shown in Fig.12.8. It can be seen that, fig
12.8 Performance index
Joo(L1,V1)=JO(L1,V1)=J1,0(L1,V1)=J2,0(L1

Mat khéc, ta co:
Do do,
D6 1a diéu phai chirng minh.

T quan diém FDI, két qua trong DPinh Ly
12.12 c6 thé dugc hiéu 1a hé FD duoc thiét
ké bang phuong phap thoa hiép trong bai bao
nay khong bén viing bang hé FD duoc thiét
ké bang phuong phap nghiém duy nhat. Bén
canh d6, nhu da dé cap trong phan trudc,
phuong phap théa hi¢p mai co kha nang woc
tinh kich thuéc cua cac 16i kha di tét hon.
Trong bdi canh ndy, ching téi mudn nhan
manh rang quyét dinh chon lya mot phuong
phap tiép can nhat dinh phai duoc thuc hién
dwa trén muc tiéu thiét ké chi khong phai
dya trén chi sé hiéu suét tdi wu toan hoc.




,V1)=0.1769 (dashed line), performance
index J1,0w(L2,V2) (solid line), and
performance index J2,0(L2,V2) (dotted line)

These results verify Theorems 12.10-12.12.

In the simulation study, the simulation time is
set to be 2000 seconds and the control input is
a step signal (step time at 0) of amplitude 5.
The unknown disturbances are, respectively,
a continuous signal taking value randomly
from a uniform distribution between [ -0.1,
0.1], a sine wave 0.1 sin(0.1t), and a chirp
signal with amplitude 0.1 and frequency
varying linearly from 0.02 Hz to 0.06 Hz.
Fault 1 appears at the 1200-th second as a
step function of amplitude 0.75. Fault 2
appears at the 1000-th second as a step
function of amplitude 0.4. The fault energy is
|| f || 2= 24 71. The residual signals are shown
in Fig.12.9, where rl denotes the residual
vector generated with L1,V1 and r2 that by
L2,V2.AS  |r1||=25.45,  |x2]=214,
theresidual vector obtained by L1,V1 gives a
better estimation of the energy level of the
fault signal. On the other side, we see from
the second figure that the residual vector got
by L2,V2 shows 12 Integrated design of fault
detection systems a better fault/disturbance
ratio in the sense of (12.78), (12.82) and
(12.76). This demonstrates the results in
Theorem 12.12.

Fig. 12.9 Residual signals




12.4 On the application to stochastic systems

In the last two sections, two trade-off
strategies and the associated design methods
have been developed in the norm based
evaluation framework. It is of practical
interests to know if they are still valid for
stochastic systems and in the statistic testing
framework. In this section, we shall briefly
discuss the related problems.

12.4.1 Application to maximizing FDR by a
given FAR

In Subsection 11.1.3, we have introduced a
GLR solution to the residual evaluation and
threshold computation for stochastic systems
modelled by (11.1)- (11.2). The core of this
approach is the computation of the FAR in
the sense of Definition 12.1, which is given
by (see (11.17))

Equation (12.85) can be equivalently written
as

when the residual evaluation function is re-
defined by

Now, if we set the residual generator
according to Corollary 12.1, then we have




As a result, Robt,DE delivers the maximal
probability

while keeping the same FAR as given by
(12.86). Remember that the prob- ability
given in (12.87) is exactly the FDR given in
Definition 12.2. In this context, we claim that
the solution presented in this section, namely
the uni- fied solution, also solves the FD
systems design problem for stochastic
systems (11.1)-(11.2), which is formulated as:
given FAR (in the sense of Definition 12.1)
find the residual generator,L and V, so that
the FDR (in the sense of Definition 12.2) is
maximized.

12.4.2 Application to minimizing FAR by a
given FDR

The trade-off strategy proposed in Section
12.3 requires a threshold setting according to
(12.59), which also fits the FDR in the sense
of Definition 12.2,

For the computation of the associated FAR as
defined in Definition 12.1, we can again use
the estimation

Remember that the optimal residual generator
Robt,FA ensures that

It results in @ maximum probability which in
turn means Ropt,FA offers the minimum
bound for among all possible residual
generators. In other words, Ropt,FA delivers
a minimum FAR by a given FDR.

12.5 Notes and references




Although this chapter is less extensive in
comparison with the other chapters, it is, in
certain sense, the soul of this book. Di erent
from the current way of solving the FDI
problems in the context of robustness and
sensitivity, as introduced in the previous
chapters, the model-based FDI problems have
been re-viewed in the context of FAR wvs.
FDR. Inspired by the interpretation of the
concepts FAR and FDR in the statistical
framework, we have

* introduced the concepts of FAR and FDR in
the norm based context,

* defined SDF and SDFA and, based on them,
« formulated two trade-o problems:
maximizing fault detectability by a given
(allowable) FAR (PMax-SDF) and
minimizing false alarm number

by a given FDR (PMin-SDFA).

In this way, we have established a norm
based framework for the analysis and design
of observer-based FDI systems. It is
important to notice that in this framework the
four essential components of an observer-
based FD system, the residual generator,
residual evaluation function, the threshold
and the decision logic, are taken into account
by the problem formulations. This requires
and also allows us to deal with the FDI
system in an integrated manner. The
integrated design distinguishes the design
procedure  proposed in this chapter
significantly from the current strategies,
where residual generation and evaluation are
separately  addressed. It has  been
demonstrated that the wunified solution
introduced in Chapter 7 also solves PMax-
SDF, while the solution with inversing the




magnitude profile of the fault transfer
function matrix is the one for PMin-SDFA. In
the established norm based framework, a
comparison  study has  further been
undertaken. The results have verified, from
the aspect of the trade-o FAR vs. FDR, that

* the unified solution leads to the maximum
fault detectability under a given FAR and

* the ratio between the influences of the fault
and the disturbances is the decisive factor for
achieving the optimum performance and thus
the influ- ence of the disturbance should be

integrated into the reference model by
designing a reference model based FD
system.

One question may arise: why have we
undertaken a so extensive study on the
PUIDP in Chapter 6 and on the robustness
issues in Chapter 7? To answer this question,
we would like to call reader's attention to the
result that the solution of the PUIDP is
implicitly integrated into the general form of
the unified solution (12.29). In fact, the
solution of the PUIDP gives a factorization in
the form of (7.305), which leads then to
(12.29). Also, it should be pointed out that in
the established norm framework, we have
only addressed the FDI design problems
under the assumption that the residual signals
are evaluated in terms of the L2 norm. As
outlined in Chapter 9, in practice also other
kinds of signal norms are used for the purpose
of residual evaluation. To study the FDI
system design under these norms, the
methods and tools introduced in Chapter 7 are




very helpful. As additional future work we
would like to mention that an "LMI version
of the unified solution would help us to
transfer the results achieved in this chapter to
solving FDI problems met in dealing with
other types of systems. In Section 12.4, we
have briefly discussed the possible
application of the proposed approaches to the
stochastic systems. It would be also a
promising topic for the future investigation. A
useful tool to deal with such problems e
ciently is the optimal selection of parity
matrices presented in Section 7.5, which
builds a link to the GLR technique.

A part of the results in this chapter has been
provisionally reported in [31].

Fault isolation schemes

Fault isolation is one of the central tasks of a
fault diagnosis system, a task that can
become, by many practical applications, a
real challenge for the system designer.
Generally speaking, fault isolation is a signal
processing process aiming at gaining
information about the location of the faults
occurred in the process under consideration.
Evidently, the complexity of such a signal
processing process strongly depends on

. the number of the possible faults,




. the possible distribution of the faults in
the process under consideration,

. the characteristic features of each fault
and
. the available information about the

possible faults.

Correspondingly, the fault isolation problems
will be solved step by step at different stages
of a model-based fault diagnosis system.
Depending on the number of the faults, their
distribution and the fault isolation logic
adopted in the decision unit, the residual
generator should be so designed that the
generated residual vector delivers the first
clustering of the faults, which, in accordance
with the fault isolation logic, divides the
faults into a number of sets. At the residual
evaluation stage, the characteristic features of
the faults are then analyzed by using signal
processing techniques based on the available
information of the faults. As results, a further
classification of the faults is achieved, and on
its basis a decision about the location of the
occurred faults is finally made. If the number
of the faults is limited and their distribution is
well structured, a fault isolation may become
possible  without a complex residual
evaluation.

The main objective of this chapter is to
present a number of widely used approaches
for the purpose of fault isolation. Our focus is
on the residual generation, as shown in
Fig.13.1. We will first describe the basic
principle, and then show the limitation of the
fault isolation schemes which only rely on
residual generators and without considering
the characteristic features of the faults and
thus without the application of special signal
processing techniques  for the residual




evaluation, and finally present and compare
di erent observer- based fault isolation
approaches.

13.1 Essentials

In this section, we first study the so-called
perfect fault isolation (PFIs) problem
formulated as: given system model with the
fault vector f(p)eRkf, find a (linear) residual
generator such that each component of the
residual vecto r(p)eR--—-—=Kkf corresponds to
a fault defined by a component of the fault
vector f(p). We do this for two reasons:

by solving the PFIs problem

* the role and, above all, the limitation of a
residual generator for the purpose of fault
isolation can be readily demonstrated and

* the reader can get a deep insight into the
underlying idea and basic principle of
designing a residual generator for the purpose
of fault isolation.

On this basis, we will then present some
approaches to the solution of the PFls
problem.

13.1.1 Existence conditions for a perfect fault
isolation

In order to study the existence conditions for
a PFIs, we consider again the general form of
the dynamics of the residual generator
derived in Chapter 5

« vai tro, va trén hét, han ché cua khbi phat
tin hiéu du trong co l1ap 16i ¢ thé dé& dang
chirng minh dugc va

« nguoi doc s& hiéu sdu hon cac Y tudng va
nguy@n 1y co ban trong thiét ké khéi phat tin
hiéu du nham c6 1ap 15i.

Trén co so nay, ching toi sé trinh bay mot sé
phuong phép giai bai toan PFIs.

13.1.1 Piéu kién ton tai dbi voi cd lap 15i
hoan hao

Pé nghién ctu cac diéu kién ton tai trong
mot PFIs, chang ta lai xét dang dong hoc
téng quat caa khdi phat tin hiéu du dugc rat
ra & Chuong 5






