Theo yéu cu ciia khich hing, trong mt nim
qua, ching t61i 48 dijch qua 16 mén hoc, 34
cudn séch, 43 bai béo, 5 sb tay (chua tinh cic
tai liéu tir nim 2010 tr& vé& truéc) Xem & ddy

DICH VU "Cpisau mot lan lién lac, viée

DICH S it
TIENG

ANH |
CHUYRN Gia ca: co thé giam dén 10

NGANH nhin/l tran
NHANH

NHAT VA Chat luc_mg:Tgo dung niém tin cho
khach hang bang céng nghé 1.Ban

XAC théy duoc to.:ém b6 ban dich; 2.Ba,n

NHAT danh gia chat lwong. 3.Ban quyét
dinh thanh toan.

Tai liéu nay dwoc dich sang tiéng viét béi:

VA A2 L E T A (W 11|

Tim ban géc tai thw muc nay (copy link va dan hodc nhan Ctrl+Click):

https://drive.google.com/folderview?id=0B4rAPqlxlMRDSFE2RX0Q2N3FtdDA&usp=sharing

Lién hé dé mua:

thanhlam1910 2006@yahoo.com hoic frbwrthes@gmail.com hoic s6 0168 8557 403 (gap Lam)

Gi4 tién: 1 nghin /trang don (trang khéng chia cdt); 500 VND/trang song ngir

Dich tai li¢u ciaa ban: http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html



https://drive.google.com/folderview?id=0B4rAPqlxIMRDSFE2RXQ2N3FtdDA&usp=sharing
mailto:thanhlam1910_2006@yahoo.com
mailto:frbwrthes@gmail.com
http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

A beginner’s guide to the
modern theory of polarization

1. Introduction

The concept of electric dipole
moment is central in the
theory  of  electrostatics,
particularly in describing the
response of systems to applied
electric fields. For finite
systems such as molecules it
poses no conceptual or
practical problems. In the
ionic limit the dipole moment,
d, of a collection of charges,
qi, at positions r is defined as

for the case of a continuous
charge density, en(r) (where e
is the electronic charge and
n(r) is the number density) this
expression is straightforwardly
extended to

Provided that the molecule or
cluster carries no net charge
these expressions are well
defined, can be
straightforwardly  evaluated
and yield results - for example
for the direction of the dipole
moment - that are consistent
with our intuitive
understanding.

Things apparently start to turn
to custard, however, when we
try to extend this simple
reasoning to bulk solids.

The wusual way to define
intrinsic quantities in
macroscopic systems is to

Huoéng dan nhap mén ly thuyét
phan cuc hién dai cho ngudi mai
bat dau CHECKEARROMMaY

1. Gidi thiéu
Khai niém momen ludng cuc
dién la khai niém trong tam
trong tinh dién hoc, né miéu ta
su dap ung cua mot hé khi dat
trong mét dién truong. Doi Vi
cac hé httu han nhu cac phan tu,
n6 khéng gay ra nhirng kho khan
vé mat Kkhai niém hay thuc
nghiém. Trong giéi han ion,
momen ludng cuc d cua tap hop
cac dién tich g tai mot vi tri ry
dugc dinh nghia nhu sau :
(1)
Trong truong hop mat do dién
tich lién tuc, en(r) (trong do ¢ 1a
dién tich electron va n(r)) la mat
d6) biéu thirc trén duoc viét lai
dudi dang tich phén
@
Vi dieu kién la cac phén tu hay
cdc dam hat tai dién khong co
dién tich toan phan, cac biéu
thac ndy c6 thé dugc xac dinh
twuong minh, ciing nhu c6 thé
ude luong ching dé dang va thu
dugc két qua bang sé cu thé - vi
du nhu hudéng cia momen ludng
cuc — phu hgp vaéi truc giac cua
chung ta.
Tuy nhién moi thi sé tro nén
phuc tap khi ching ta mé rong ly
luan nay cho céc vat ran dang
khdi. Theo cach thong thuong
khi dinh nghia nhitng dai luong
co ban cua mot hé & kich thudc
vi mo ta thuong dé cap dén tinh




introduce the property per unit
volume or mass. For example
the magnetization is the
magnetic moment per unit
volume, and the bulk analog to
the electric dipole moment,
the  electric  polarization,
should be represented by the
electric dipole moment per
unit volume. The relevant
quantity is then evaluated
within a small repeat unit - the
unit cell - of the solid, and
normalized with the volume of
the chosen unit cell. The
problem with this simple
method in the case of electric
polarization can be understood
in the simple one-dimensional
cartoon of Fig. 1. without
performing any calculations,
we can see that the two
equally valid unit cells shown

with  dashed lines have
completely opposite
orientations of the
polarization!

This  difficulty led to

tremendous confusion in the
field, with discussions as
fundamental as whether the
polarization  (and  related
guantities such as the
piezoelectric response) could
be considered as intrinsic
properties in bulk solids, or

are in fact determined by
details of the surface
termination.

The answer came gradually as

chat trén mot don vi thé tich hay
khéi lwong. Vi du nhu do tir hoa
l& momen tir trén mot don vi thé
tich, twong tu do phan cuc dién
dugc biéu dién 13 momen ludng
cuc dién trén mot don vi thé tich.
Tuc la, cac dai lwong nay duogc
udc tinh vai mot don vi lap lai
nho nhat, goi 13 6 don vi cua chat
ran, va dugc chuan hoa vai thé
tich caa 6 don vi dugc chon.
Hinh 1 biéu dién nhitng rac roi
gap phai khi st dung phuong
phap don gidn nay cho trudong
hop d6 phén cuc dién qua anh
mét chiéu don gian: khong can
thue hién bat ky tinh toan nao,
chlng ta c6 thé nhan thay 2 6
don vi v&i gia tri bang nhau, vé
bang cac dudong dut nét, cd su
dinh hudng phén cuc hoan toan
dbi nhau.

Viéc nay dan dén nhirng van dé
rait mo ho trong linh vuc nay,
nguoi ta khdng biét c6 nén xét
d6 phén cuc (va cac dai luong cé
lién quan nhu dap ung ap dién)
nhu cac tinh chat bén trong chat
ran, hay nén xac dinh nd qua céc
dic diém cua bé mat phan céch.

Cau tra loi dan hién ra khi cac




researchers began to realize
that in fact one should work
with changes in polarization
rather than with absolute
values, because these are well-
defined, and can be compared
to experimentally measurable
observables [1]. Then the
confusion was thoroughly
resolved around 20 years ago
with the introduction of the
so-called Modern theory of
polarization [2-4]. This very
elegant theory showed
rigorously that the polarization
of a periodic system is in fact
a lattice rather than a vector
(do not worry, we will explain
what this means later), and
that the polarization lattice can
be calculated quantum
mechanically using electronic
structure methods such as
density-functional theory.

The purpose of this paper is to
introduce in the simplest
possible terms the apparent
difficulties associated with
defining polarization in bulk

solids, and the solutions
provided Dby the modern
theory. It is motivated by my
having explained these

concepts repeatedly to many
and diverse students ranging
from experimentalists with a
casual interest in
understanding obscure theory
papers to beginning hard-core

nha nghién ctu nhan ra rang
chung ta nén xét cac dién tich
trong do phan cuc chu khong
phai xét do lon cua no, vi ching
hoan toan xac dinh va c6 thé so
sanh véi cac gia tri thuc nghiém
[1]. Sau dé nhiing rac roi do da
duoc giai quyét trong khoang 20
nam trude day véi su ra doi cua
thuyét hién dai vé d6 phan cuc
[2-4]. Ly thuyét tinh té nay da
chung minh mot cach chat ché
rang do phan cuc cua mot hé
tuan hoan thyc chat 1a mét mang
chie khong phai mot vecto
(chung t6i s€ giai thich khai
niém nay sau), va mang phan
cuc c6 thé duoc tinh todn theo
kiéu co hoc luong tir bang céc
phuong phap st dung cau trdc
dién tir nhu 1y thuyét ham mat
do.

Muc tiéu cua bai bao la sur dung
nhitng ngdn tir don gian nhat dé
trinh bay nhitng kho khin hién
nhién khi xac dinh d6 phén cuc
trong vat ran dang khdi va nhiing
cach giai quyét bang thuyét hién
dai. Pong co cua nd xuat phat tir
viéc t0i da phai giai thich nhiing
khai niém nay qua nhiéu lan cho
cac sinh vién cua téi & moi linh
vuc tor nhimg nguoi lam thuc
nghiém bat chot quan tim dén
viéc tim hiéu cac bai béo ly
thuyét chua rd rang dén nhitng
nha vat ly chit rin mai budc vao




theoretical solid-state
physicists ~ and  quantum
chemists.

This paper in no way intends
to substitute for the elegant
early papers on the topic, nor
the subsequent detailed and
rigorous review papers which
are referenced throughout.
Indeed | hope that this
informal introduction provides
sufficient background for the
reader to tackle these excellent
papers without intimidation.

2. Bulk periodicity, the
polarization lattice and the
polarization quantum

We begin by reconciling the
different values for
polarization obtained for the
different choices of unit cells
in Fig. 1 by introducing a
formal concept that at first
sight IS even more
confusing—that is the multi-
valuedness of the bulk
polarization. We will show,
however, that a multi-valued
polarization is a natural
consequence of the periodicity
in a bulk solid, and hopefully
that it is actually not so
frightening. We will see, in
fact  that  changes in
polarization - which are the
quantities that are anyway
measured in experiments - can
be single valued and well

con duong chuyén nghiép va
nhitng nha héa hoc luong tur.

Bai bao nay khong hudng dén
viéc thay thé cac bai bao tinh té
truge day voi cing cha dé, ciing
nhu nhitng bai bao tong quan
nghiém tac va chi tiét sau do,
nhitng bai bao da dugc tham
khao rat nhiéu . Thuc ra tdi chi
hi vong bai bao s& cung cap cho
nguoi doc nhing kién thic nén
tang can thiét du dé co thé hiéu
dugc nhirtng bai bao hay trong
linh vuc ndy ma khdng gap bat
Ky tré ngai nao.

2.Tinh tuan hoan khéi, mang
phan cuc va luong tir phan cuc




defined, and we can once
again sleep without anxiety.
Fig. 1. One-dimensional chain
of alternating anions and
cations, spaced a distance a/2
apart, where a is the lattice
constant. The dashed lines
indicate two representative
unit cells which are used in the
text for calculation of the
polarization.

We take the simplest possible
example of a one-dimensional
chain of singly charged
alternating anions and
cations—the closest real-life
analog would be rock-salt
structure  sodium  chloride
along the [HI] direction. Look
at Fig. 1 which shows such a
chain with the atoms spaced a
distance a/2 apart so that the
lattice constant is a. The first
thing to notice is that all of the
ilons are centers of inversion
symmetry: if | sit on any ion
and look to the left, then to the
right I see no difference. So by
definition this lattice is non-
polar.

Now let’s work out the
polarization by calculating the
dipole moment per unit length
(the  definition in  three
dimensions is dipole moment
per unit volume) using in turn
the two unit cells shown as the
dashed rectangles to compute
the local dipole moment.
(Formally, different choices of




unit cells correspond to
different  bases, that is
different ways of specifying
the positions of the atoms.)
First, the cell on the Ileft.
Taking the left edge of the
shell as the origin (x=0), we
have an ion with charge -1 at
position a/4, and an ion with
charge +1 at position 3a/4. So
the polarization, or dipole
moment per unit length is

in units of |e|. Immediately we
have an apparent problem:
using this method, our non-
polar chain has a non-zero
polarization.

I am afraid that things will get
worse before they get better.
Next, let’s do the same
exercise using the right-most
unit cell. Again taking the left
edge of the unit cell as the
origin, this time there is a
positively charged ion at
position a/4, and a negatively
charged ion at 3a/4. So

Again a non-zero value, and
this time different from the
value we obtained using the
other, equally valid unit cell,
by an amount a.

So what is going on here, and
how can we connect it to
physical reality? Well, if we
were to repeat this exercise
with many choices of unit cell
(convince yourself by




choosing a couple of arbitrary
unit cells and giving it a try!),
we would obtain many values
of polarization, with each
value differing from the
original value by an integer.
We call this collection of
polarization values the
polarization lattice. In this
caseitis..,—5/2, — 3/2, —
1/2, 1/2, 3/2, 5/2 .... Notice
that the lattice of polarization
values is symmetric about the
origin. In fact this is the
signature of a non-polar
structure:  the  polarization
lattice may or may not contain
zero as one of its elements, but
it must be centrosym- metric
around zero.

Now what is the significance
of the spacing (in this case 1)
between the allowed values?
Well, imagine removing an
electron from one of the
anions in the lattice (leaving a
neutral atom) and moving it
by one unit cell to put it on the
next anion to the right.

Because of the periodic
boundary conditions of the
infinite lattice, the next anion
simultaneously has its electron
removed and moved one unit
cell to the right, and so it is
able to accept the incoming
electron and appear
unchanged at the end of the
process. There has been no




change in the physics of the
system resulting from the
relocation of the electrons by
one unit cell to the right. But
what has happened to the
polarization? Well, in each
unit cell a charge of — 1 has
moved a distance a, changing
the dipole moment by — a and
the polarization by — 1. We
can clearly perform this
thought  experiment  any
number of times, and in either
direction, changing the
polarization by any integer
without changing the physical
system! We call the value of
polarization resulting from
moving one electron by one
unit cell the polarization
quantum, Pg. In  one
dimension it is equal to the
lattice constant divided by the
length of the unit cell, which
is of course one (in units of
the electronic charge). Going
back to the polarization lattice
of our non-polar chain, we see
that its polarization values
correspond to half-polarization
guanta. In fact all
onedimensional non-polar
systems have polarization
lattices of either

0 + nPq or Pg/2 + nPq
(this is discussed very nicely
at greater length in Ref. [5]).

If this all seems too esoteric,
please bear with me for one
more paragraph by which time




| hope things should start
making sense. First, let’s think
about how we measure
electrical polarization, and
what a reported measured
polarization really means.
Look at Fig. 2—this is a
cartoon of a standard way of
measuring  the  electrical
polarization using a so-called
Sawyer-Tower circuit. In the
high temperature, paraelectric
structure, the material consists
of equally spaced anions and
cations; the positions of the
cations in the paraelectric
structure are shown by the
pale pink circles, and their
connections to the anions by
the dashed-line bonds. At low
temperature, the cations shift
off-center relative to the
cations, as indicated by the
solid pink circles. On the left
the material has become
polarized in the up direction as
a result of the cation sublattice
displacing upwards relative to
the anion sub-lattice. This
could happen, for example
during a ferroelectric phase
transition with an external
electric field applied in the up
direction. Electrons
accumulate at the upper
electrode, and holes (or a
depletion of electrons) at the
lower electrode in order to
screen the surface charge
resulting from the ionic




displacements. In fact, on each
electrode, the accumulated
charge per unit area is exactly
equal to the polarization of the
sample. So if we could
measure the amount of charge
accumulation we would have a
direct ~measure of the
polarization. But how can we
do this? Well, next, imagine
reversing the orientation of the
polarization - for example by
applying an external electric
field in the down direction - to
reach the configuration on the
right. Now electrons
accumulate at the lower
electrode and holes at the
upper electrode to achieve the
screening. They achieve this
by flowing through the
external circuit connecting the
two electrodes, where they can
be counted by comparing the
voltage across the series
reference capacitor then using
Q= CV! The amount of charge
per unit area of electrode that
flows during the transition is
equal to the change in
polarization between the up-
and down-polarized states; the
“‘effective’’ value of
polarization which is reported
- and which is usually referred
to as the spontaneous
polarization - is half of this
number.

Now, bearing in mind that
what is measured in an




experiment is a change in
polarization, let’s go back to
our cartoon one-dimensional
model and make some sense
out of this

In the upper part ofFig. 3 we
repro-duce the non-polar one-
dimensional chain ofFig. 1,
and below itwe show a similar
chain in which the cations
have been displaced by a
distance d relative to the
anions in the manner of a
ferro-electric  distortion to
Create a polar system. Let’s
repeat our earlier exercise of
calculating the polarization
using the two unit cells shown
as the dashed rectangles.

In the left hand case
and in the right hand case

Again the two answers are
different, but this time that
does not worry us, because we
recognize that they differ by
exactly one  polarization
guantum. Next comes the key
point: let’s calculate the
change in polarization
between the polar and non-
polar chains using each unit
cell as our basis. First for the
cell on the left




In both cases the change in
polarization between polar and
non-polar chains is the same.
In fact this would have been
the case whatever unit cell we
had chosen to make the
calculation. So, while the
absolute value of polarization
in a bulk, periodic system, is
multi-valued, the change in
polarization — which
remembers the quantity that
can be measured in an
experiment — is single valued
and well defined, provided
that we stick with the same
choice of unit cell and basis
throughout the analysis.

Just to really drive the point
home, in Fig. 4 we plot the
polarization of the ideal one-
dimensional ionic chain as a
function of the displacement
of the cations (as a fraction of
the lattice constant) from their
non-polar positions. As we
calculated earlier, for zero
displacement the polarization
lattice is centrosymmetric and
consists of all half-integer
values (black circles). As the

displacement increases, the
polarization increases linearly
and by the same amount along
each branch of the polarization
lattice (labeled by n 1$1, 0,1
etc.) The branches are always
separated from each other by
the same amount, the




polarization quantum, which is
equal to 1 in this case. The
dashed lines on the n ! 1
branch show that for a
displacement of 0.25a , the
polarization increases from 0.5
to 0.75, and so the change in
polarization is 0.25. An
identical change in
polarization is obtained for the
same displacement on any of
the other branches. If the
displacement is increased
artificially to 0.5 — that is half
of the unit cell — the ions end
up on top of each other. In our
thought  experiment  the
polarization is now formally
identical on two branches of
the polarization lattice which

could have some unusual
conse-quences, although in
practice we would have

achieved nuclear fusion which

would likely dominate the
physics
Fig. 2. Schematic of the

Sawyer-Tower method of
measuring ferroelectric
polarization. The material on
the left is polarized in the up
direction and its surface
charge is  screened Dby
electrons in the upper
electrode and holes in the
lower electrode. When the
polarization is  switched
(right), electrons and holes
flow through the external
circuit to screen the new




opposite surface charges, and
are counted by comparing the
voltage across the material
with that across a reference

capacitor.

Fig. 3. The upper panel
reproduces the one-
dimensional chain of

alternating anions and cations
of Fig. 1. In the lower panel,
the cations are displaced to the
right by a distance d relative to
the anions, with the vertical
dotted lines indicating their
original positions.

Fig. 4. Polarization as a
function of the displacement,
d, of the cations in the 1D
chain of Fig. 3. The
polarization lattice is zero-
centered, and the branches are
separated by the polarization
quantum. Notice that the
branches of the lattice run
exactly parallel to each other,
so that differences in
polarization along each branch
for the same displacement are
identical.

2.1. Extension
dimensions
The one-dimensional example
that we chose here for
simplicity is not entirely
without physical relevance;
for example ferroelectric or
polar polymers closely
resemble one-dimensional
chains. Such an application is

to three




discussed in Ref. [6], along
with an excellent analysis of
the development of an infinite
chain from a finite one. In
most cases, however, we are
interested in threedimensional
systems.

Fortunately the extension to
three dimensions IS
straightforward conceptually,
if a little bit tricky in practice:
in three dimensions, the
allowed values of polarization
form a three-dimensional
lattice, with values spaced by

where e is the electronic
charge, Q is the unit cell
volume, and R = MiniRi is any
lattice wvector, with Ri the
length of the ith primitive
basis vector. The units are
now dipole per unit volume, or
charge per unit area—often
polarizations  in  practical
ferro- electrics are reported in
mCcm-2. There are now three
polarization quanta - one for
each direction of the basis
vectors - given by

Pg,i=0eR,. 9)




If the spontaneous polarization
lies along a general direction
that is not a lattice vector, it is
obtained from the projection
of the three-dimensional
polarization lattice onto the
relevant direction in real
space.

As an example, let’s look at
the case of the prototype
multiferroic material,
perovskite-structure  bismuth
ferrite, BiFeO3. Bulk BiFeO3

iIs rhombohedral, and the
spontaneous polarization
points along the [111]
direction of the simple

perovskite cube, which is also
the [111] direction of the
rhombohedral cell. For the
ideal rhombohedral angle of
60°, the usual basis vectors
are, in terms of the unit
Cartesian basis vectors, X, y
and Z, and the primitive cubic
lattice constant, a0

R1 =a0[x,y 0],
R2 = a0[x ,0Z],
R3 =a0[0,y ,Z],

and different branches on the
polarization lattice differ by
any linear combination of any
integer multiple of e/Q
multiplied by these vectors.
To obtain the spontaneous
polarization along the [111]
direction, the component of
polarization along only one of
the lattice vectors needs to be




calculated because by
symmetry the components
along the other lattice vectors
are identical. Then the
polarization along the [111]
direction is three times the
projection of one component
onto this direction, that is 3%/|
times the polarization along a
lattice vector. Since each
polarization component along
the lattice vectors was defined
modulo eRi/Q, the sum of the
projections of7 these
polarization quanta onto the
[111] direction - 3 x e/Qy"R -
gives the polarization quantum
along that direction.

When the symmetry is lower,
for example in the monoclinic
structure of strained BiFeO3,
the direction of  the
spontaneous polarization can
often not be determined by
inspection. Then the best way
to proceed is to calculate the
full polarization lattices for the
structure of interest and a
high-symmetry reference
structure and to extract the
spontaneous polarization by
taking the difference. In this
case, it is often necessary to
also calculate the polarization
lattices at intermediate
distortions to determine how
to correctly connect the lattice
points.

Two more subtleties to note:




first, it is clear from this
discussion that if the shape
and/or size of the unit cell is
changed - for example to
accommodate a  different
magnetic ordering, tilt pattern
of oxygen octahedra, or in
response to applied strain - the
polarization lattice and
quantum will change
accordingly. Ref. [7] provides
an excellent discussion of the
consequences of this in the
context ~ of  piezoelectric
response. And second, in non-
magnetic systems, the
polarization  quantum  is
usually multiplied by an
additional factor of two
because the up- and down-spin
electrons are equivalent, and
shifting an up-spin electron by
a lattice vector also shifts the
corresponding down-spin
electron.

3. Wannier representation
and Berry phase

In the previous section we
discussed the multi-valuedness
of the polarization in a bulk
periodic solid and reconciled it
with what can be measured
experimentally for the simple
example of an array of ions.
Of course in a real solid, there
Is (thankfully) more chemistry
to take care of.




In this section we will first
explain how this chemistry
can be incorporated rather
simply by extending the ionic
model through the method of
Wannier functions. (A similar
approach is followed in Ref.
[8], where an algorithm is
developed that is particularly
suited to  localized-basis
quantum chemistry codes.)
Once we are comfortable with
this conceptually we will
move on to the real meat of
the  modern theory of
polarization—the Berry phase
method.

Remember that the Wannier
function, wn(r), in unit cell R
associated with band n is
defined as

where Cnk(r) = elkrunk(r) are
the Bloch functions, written as
usual in terms of the cell-
periodic part, unk(r). Here O
is the unit cell volume, and the
integral is over the Brillouin
Zone.

Unlike the Bloch functions
which are delocalized in
space, the Wannier functions
are localized. As a result they
are often used in visualization
of chemical bonding, as well
as for basis sets in electronic
structure calculations, where




their minimal overlap can lead
to favorable scaling with
system size. They are relevant
here, because their localized
nature provides a convenient
atomic-like description of the
charge density in a solid:
while we know in reality that
the charge density in a solid is
a continuous function, the
localized picture will allow us
to continue to calculate dipole
moments by summing over
charges multiplied by
positions.

Let’s go back to our 1D chain,
and relax the constraint that it
iIs composed of point charge
ions to give it some chemistry.
If it is helpful you could think
of it as say a chain of Na+
cations alternating with CI-
anions. In the following
figures we associate pink with
Na ions or electrons, and
green with Cl ions or
electrons. In Fig. 5 (left) we
show the molecular orbitals
that would form between two
such ions in an Na-Cl
““molecule’’—the lower
energy, bonding orbital is
occupied by two electrons and
more localized on the p orbital
of the anion, and the higher
energy, antibonding orbital is
empty and consists primarily




of cation s character. The
corresponding band structure
cartoon is shown to the right;
you can derive the dispersion
using simple linear-
combination-of-atomic-

orbital (LCAO) methods; see
for example the book by Cox

[9].

In Fig. 6 we show a cartoon of
our 1D chain again, but this
time we have separated out the
charge on the ions (all of
which are +1, and which we
continue to treat as point
charges) from the charge on
the electrons which are spread
through the system, but piled
up more on the anions than the
cations. The blobs around the
anions illustrate what we
might expect the Wannier
functions of the occupied band
to look like, with each
Wannier function containing
two electrons. The character
of the Wannier function is
mostly Cl p-like, with a little
bit of Na s character, indicated
by the slight pink tinge on the
edges. Note that if we consider
both of the electrons in each
Wannier function to be
associated with the CI ion,




then the formal charge on the
Cl is % 1(the ionic charge) $ 2
I$1, and that on the Na ion is
% 1 % 0 %1, and we recover
our simple ionic model ofFigs.
1 and 3.

How should we now calculate
the polarization of the chain?
We would like again to reduce
our polarization integral to a
sum over localized charges
multiplied by their positions.
This is straightforward for the
ions which we are still treating
as point charges. For the
electrons, it turns out that this
procedure will work too. Since
the Wannier functions are
localized, we work out the
average position of the
electrons in the Wannier
function, and treat them all as
sitting at that point. This
“‘position’> of the Wannier
function is called theWannier
center, rn. The Wannier center
associated with band n is
defined to be the expectation
value of the position operator r
for Wannier function wn

Later we will find it useful to
rewrite this expression in
terms of the periodic cell
functions using the
momentum representation of
the position operator r

You can spend your next free
Sunday morning showing that




Egs. (11) and (12) are
equivalent, take my word for
it, or follow the derivation by
Blount in Ref. [10] .

With this concept of the
Wannier center, the expression
for polarization that we used
previously for the ionic chain
extends simply to a sum over
the contribution from the point
charge ions, plus a sum over
the electronic charges centered
at the Wannier centers of each
occupied Wannier function, n

Fig. 6. One-dimensional chain
of alternating cations (pink
positively charged ion cores)
and anions (green positively
charged ion cores with their
associated negatively charged
valence electron cloud). The
dimensions and dashed unit
cells are as in Fig. 1. (For
interpretation of the references
to color in this figure caption,
the reader is referred to the
web version of this article.)

Let’s try it for the case of the
left-hand unit cell in our 1D
chain. In the non-polar case,
we can see by symmetry that
the Wannier center is at the
same position as the green
anion; remember now also that




the charge on all of the ions is
+ 1, and that each Wannier
function contains two
electrons. So the dipole
moment per unit length in the
left unit cell is

The same result as we
obtained previously! This is as
expected— the allowed values
of the polarization lattice for a
centrosym- metric structure
are dictated by the symmetry
of the crystal and the ionic
charges, and are not modified
by factors such as the details
of the chemical bonding
within the material.

Now let’s think about the off-
centered case, in the lower
part of Fig. 6. As before, the
cations have moved a distance
d to the right, but this time the
Wannier centers have also
moved - by a distance D say -
to the left. This occurs as the
chemical bond between the
near neighbor anion-cation
pairs becomes stronger, and
develops more cation s
character, whereas that
between the distant neighbor
pairs weakens; you can think
of it as a flow of electrons
from the anion (which
previously had all of the




valence electrons) toward the
cation in the process of
covalent bond formation. Let’s

see what this additional
covalency does to the
polarization

(14)

where f and 0 indicate the

final (polar) and initial (high
symmetry)
positions/wavefunctions.
Since the wavefunctions, at
least at the Kohn-Sham level,
are a direct output of standard
electronic structure codes, Eqg.
(16) can be used to evaluate
the polarization with only a
small extension to a standard
density functional theory code.
(A rigorous extension to
correlated, many-body
wavefunc- tions also exists,
see for example Refs.
[11,12].) Notice of course that
the issues discussed earlier
about multi-valuedness of the

polarization and the
polarization lattice  persist
here, and in taking the

difference in Eq. (16) one
must be careful to remain on
the same branch of the
polarization lattice.

If you are familiar with the
concept of the Berry phase




[13] and its extension to
periodic solids [14] you will
recognize the integrals in Eq.
(16) to be the Berry phase
developed by the
wavefunction unk as it evolves
along the path k. As a result,
the formalism for calculating
polarization using this method
is often called the Berry phase
theory of polarization. Refs.
[2,15,3,16] are the original
papers providing the detailed
derivations of the Berry phase
formalism, and excellent
reviews can be found in Refs.
[17,18,5]. If you find the
Berry phase concept too
frightening, however, just
stick with the Wannier
function ideas, and regard Eq.
(16) as a tool that we will see
in Section 5 allows for
convenient computation.

3.1. Subtlety—gauge
transformation!

Those of you who have
managed to stay awake and
alert to this point might raise
an objection: since the Bloch
functions are defined only to
within a phase factor, i.e.

without changing any
physically meaningful
guantities, the  Wannier

functions are not uniquely




defined! As a result, the
Wannier centers, which we
have just seen are crucial in
defining the polarization, are
also not uniquely defined. We
are saved, however, by the
fact that the sum over the
Wannier centers in any given
unit cell is well-defined - at
least modulo the polarization
quantum - and looking again
at Eq. (13) we find that this is

in fact the quantity that
matters in  defining the
polarization.  In  practice,

special choices of Wannier
functions are often made in
calculations of the
polarization. The so-called
Maximally localized Wannier
functions in which the phases
of the Bloch functions are
chosen so as to minimize the
sum of the mean squares of
the positional spread [19] are
particularly popular.

Lastly, I want to emphasize
that it is important to
distinguish between the Born
effective charge, which is a
well-defined dynamical and
measurable quantity, and the
formal, static charge on an
ion. The latter quantity, which
reflects the number of
electrons sitting at a particular
ion site, depends on how you
““‘count’’, since there is not a
unique way of deciding how
to apportion the electrons in a




chemical bond to one ion or
another. While the static
charge indeed indicates a
measure of the amount of
covalency in a compound, it is
not a good indicator of
ferroelectricity, which is rather
indicated by a change in
covalency during ionic
displacement.

4. The concept of Bom
effective charge

At this stage | think it is
appropriate  to  formally
introduce the Born effective
charge, which is a quantity
that IS very useful
conceptually in thinking about
ferroelectric polarization. In
fact we have already seen the
main idea, in Section 3, where
we saw that the polarization
resulting from the
displacement of an ion could
be different from that expected
by multiplying its formal
charge times its displacement,
in the case when the Wannier
center(s) move by a different
amount than the ion cores. In
fact in the example of Fig. 6,
as the positive cations moved
to the right, the Wannier
centers shifted to the left,
resulting in a larger overall
polarization than we would
have expected from the formal
charges alone. We say that in
this case the effective charges
on the ions - the amount of




charge that effectively
contributes to the polarization
during the displacement - are
larger than the formal charges.
This is formalized in the
concept of the Born effective
charge, Z*, which is defined
as the change in polarization
divided by the amount that an
ion (or rather the periodic sub-
lattice of equivalent ions) is
displaced

The Born effective charge is a
tensor: when an ionic sub-
lattice is displaced in direction
I, there is of course a change
in polarization along the
displacement direction, but in
addition, the polarization in
perpendicular directions, j, can
change. Turning this
expression around we can see
immediately what we have
been discussing
qualitatively—that the change
in polarization is determined
by these effective charges
times their displacements, not
by the formal charges

The total polarization is then
obtained by summing over the
contributions from the
displacements of all sub-
lattices.

In materials ~ that  are
ferroelectric, or that are close
to a ferroelectric phase
transition, the Born effective
charges tend to be
anomalously large,




particularly on the atoms that
displace the furthest from their
high symmetry to their
ferroelectric  positions.  For
example in the prototypical
ferroelectric PbTiO3, in which
the formal charges are Pb + 2,
Ti + 4 and O -2, the effective
charges on the ions that are
active during the ferroelectric
phase transition are Pb + 3.9,
Ti+ 7.1 and O -5.8 [20]. This
Is  consistent  with  the
alternative, equivalent
definition of the Born
effective charge as the force
induced on an ion by a
uniform small electric field, E:
Z*.- eShZj-eSE,:

In highly polarizable
ferroelectrics, small electric
fields generate large forces on
the ions, mediated by the
anomalously  large  Born
effective charges.

5. A few tips on getting a
Berry phase calculation to
work

Finally we describe a few of
the tricks and foibles that we
have learned through
(sometimes) bitter experience
are needed to make a Berry
phase calculation of the
polarization both run and give
the correct answer. We try to
keep our comments general—
for the specifics of a particular
code refer to the relevant
manual.




The first step is of course to
calculate the structure (if
required) and self-consistent
charge density, as in any
standard total energy
calculation. Of course the
charge density should be well-
converged with respect to the
energy cutoff and k-point
sampling. In addition, if one is
interested in systems such as
improper ferro- electrics with
small  polarization  values
[21,22], the ionic positions
must be obtained with higher-
than-usual accuracy. An extra
subtlety is to check that the
system is insulating, and with
the same number of bands
occupied at every point in k-
space, otherwise the Berry
phase is ill-defined. The
relaxed ionic positions and
self-consistent charge density
are then used as an input to the
Berry phase calculation.

One then proceeds to calculate
one of the Berry phase values
on the right-hand side of Eq.
(16), that is

XJjEAe "(

where unk is the cell part of
the Bloch function for the
structure we are considering.
First, the matrix elements are
calculated by integrating along
strings of k-points. Since S/Sk
IS a vector derivative the
matrix elements should be
computed along any three




non-collinear directions;
usually the lattice vectors are
chosen. Then multiple strings
in a particular direction are
sampled so that an integration
over the Brillouin zone can be
performed (see Fig. 7). It is
important to check
convergence both with respect
to the number of Kk-points
along a string, and the number
of strings wused in the
sampling, as the requirements
can be quite different in each
case [23]. Finally the values
for all bands

Fig. 7. Choice of the k-point
grid for a Berry phase
calculation of the polarization.
Here the polarization is to be
calculated along the z-
direction. The integration to
obtain the Berry phase is
carried out along four strings
of k points centered around G
in the kx-ky plane, with six
sampling points along each
string in the kz direction. The
final Berry phase is obtained
by averaging the values
obtained from each of the four
strings.

Fig. 8. The black dots show
the values of Berry phase
obtained by integration along
four k-point strings in the
Brillouin zone. Clearly the
average value is close to K, +
the Berry phase quantum of




2K. Mapping all of the values
into the lowest phase branch
then taking the simple average
would lead to an incorrect
result close to zero.

n are summed [5]. One
subtlety, which is sometimes
not well taken care of in
codes, concerns the procedure
for averaging the Berry phase
over the Brillouin zone. This
is usually done by taking the
sum of the Berry phase values
at each k-point, weighted by
the fractional contribution of
the k-point. This procedure
works well provided that the
value from each k-point is on
the same branch of the
polarization lattice. Fig. 8
illustrates a not-uncom- mon
problem that can occur with
some codes during the
averaging procedure. Here the
four black dots are typical
values of the Berry phase
output from a calculation. It is
clear by human inspection that
the average Berry phase is
close to k, modulo the phase
guantum of 2k. Taking a
simple average of the obtained
values, or even after mapping
them into the range between +
k, however, would result in an
incorrect value close to zero.
The correct value is obtained
by mapping the values into a
single branch - in the figure,
moving the values near -k by




2k to the positions of the white
dots as shown - Dbefore
averaging. We recommend
checking the values of Berry
phase obtained for the
individual strings if your code
performs an automatic
averaging procedure!

For a spin-polarized system,
the Berry phase calculation is
performed for both up- and
down-spin electrons
separately; the phases are
converted into polarization
units by multiplying by -
ie/2p3 and then added to the
ionic contribution (1
/Q)Y”iqiri, where qi is the
charge of the pseudopotential
or ion, to obtain the total
polarization of the system
along the chosen lattice
vector. Be careful not to add
the ionic component twice.
The above procedure is
repeated for each lattice vector
in turn. Be careful to check in
the output of your code
whether  the results are
reported with respect to the
lattice vectors or in Cartesian
coordinates!

Remember that the number
that you have now calculated
is the absolute value of the
polarization, and is only
defined modulo a polarization
guantum. To calculate the
spontaneous polarization in a
ferroelectric for example, the




procedure should be repeated
also for a high symmetry, non-
polar reference state. The
difference between the two
values, taken along the same
branch of the polarization
lattice, is then the spontaneous
polarization. Sometimes it is
necessary to re-calculate the
polarization for a number of
structures along the
deformation path between the
high- and  low-symmetry
structures in order to know
unambiguously which
difference to take. For
example, Fig. 9 shows the
calculated polarization values
for the case of perovskite
structure BiFeO3, one of the
most well-studied multiferroic
materials [24]. Notice first that
the polarization lattice for the
non-polar structure, labeled
with 0% distortion, does not
contain zero, but is centered
around 92.8 mCcm-2, which is
half a polarization quantum. It
is clear from following the
evolution of the polarization
with distortion that the correct
value for the spontaneous
polarization is 187.8-92.8 =
95.0 mCcm-2. From a
calculation of only the end-
points at the R3c and - R3c
structures  the appropriate
difference to take would be
unclear, and one might
incorrectly assume a value of




1(2.3-(-2.3)) = 2.3 mC cm-2.
Finally a hint for calculating
Born effective charges. Since
these are  defined as
derivatives, in principle the
polarization should be
calculated for the structure of
interest, and then again for an
infinitesimally small
displacement of each ion in
turn. In practice,

Fig. 9. Calculated polarization
as a function of percentage
distortion from the high
symmetry non-polar structure
(0% distortion) to the ground
state R3c structure for
perovskite BiFeO3. The black
dots are calculated points and
the dashed lines are a guide to
the eyes illustrating the
evolution along branches of
the polarization lattice. From
Ref. [24].

however, if the displacement
Is too small the result from
this approach can be noisy.
The best plan is to plot
polarization as a function of
jonic displacement, starting
with very small displacement
values, and to take the slope of
the line in the region beyond
the noise but before the non-
linear regime.

6. Last words

I hope that this paper has
taken away some of the
mystique associated with the




modern theory of polarization,
and motivated you to start
making your own calculations
of spontaneous polarization

and related dielectric
properties. For more practical
introductory help, I

recommend working through
the tutorials that accompany
many of the electronic
structure computational
packages. For example the
Lesson on polarization and
finite electric field provided
by the ABINIT code,
www.abinit.org, is particularly
helpful. Or even better, attend
a hands-on course hosted by
one of the public codes where
you will have direct access to
leading experts in the field.
Good luck!






